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FOREWORD

This report documents the effort performed under contract number N00024-

80-C-6292 for the Naval Sea Systems Command Code 63R, and covers the

period from October 1980 to September 1981.. The study has considered the

use of LMS adaptive cancellation to suppress convergence zone surface rever-

beration in a bistatic sonar. The work was directed by Mr. Daniel Porter

of NAVSEA Code 63R.
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ABSTRACT

This report considers the cancellation of surface reverberation from the

convergence zone (CZ) using an LMS multiple canceller structure. In CZ

operations, this surface reverberation is often the limiting factor in the de-

tection of low doppler targets. The multiple reference canceller approach is

bistatic in that hydrophones spatially separated from the active sonar trans-

mit/receive array are used as references to cancel the CZ surface reverber-

ation. When the target is submerged below the CZ, providing spatial separa-

tion of the target and surface, it may be possible to spatially reject the CZ

surface reverberation but not the target, allowing detection.

The first phase of the study, reported in this document, concentrates

on the ability of the canceller to reject the reverberation in the absense of

signal. The CZ surface reverberation is modeled as an extended source with

range extent limited by the width of the CZ and horizontal extent limited by

the horizontal directivity of the transmitter. When viewed from typical con-

vergence zone ranges, this source appears to have narrow angular extent.

Using the narrow extended source model, expressions are developed for the

second order statistics of the canceller output. It is shown that the solution

to the spatial cancellation problem with a narrow, extended source is func-

tionally equivalent to the linear prediction of a bandlimited, temporal sequence.

This equivalence not only allows use of the results of linear prediction theory

in the spatial case, but provides an intuitive feel for the parametric behavior

of the spatial canceller.

Using the analytical results, the cancellation achieved is examined as a

function of the reverberation and canceller parameters. It is shown that as

the number of references, K, is increased, the cancellation improves rapidly

.. . .. .. .1I I I I I I . .. . , . . .



up to some threshold value, say, K=Ko, the improvements diminish rapidly.

Given the computational cost of adding a reference, the use of K >Ko refer-

ences may not be justified. The value of Ko is determined approximately,

and provides a design guide for the selection of the number of references

in any given sonar situation. Significantly, effective cancellation of the

reverberation can be achieved using less than four references. Extensive

curves showing the parametric dependencies of the cancellation on the de-

sign parameters are given as design tools. The report also describes

several configurations of the LMS canceller structure for use in the non-

stationary reverberation environment and discusses their performance.

The second phase of this study will focus on two areas: the incorpora-

tion of a plane wave signal in the model; and the verification of the extended

source model as representative of the CZ surface reverberation. This report

on the first phase of the study includes some initial determination of the

response of the canceller to the signal. These results must be extended to

include the effect of the primary array and the detailed characteristics due

to separation of the target and the reverberating surface. The performance

of the canceller will ultimately be evaluated in terms of the improvement in

detection performance provided by the canceller over that achieved without

the canceller. Again, this will be examined as a function of the canceller

design parameters, reverberation extent, and the spatial separation between

surface and target.

To assess the validity of the analytical models, a computer simulation

of the multiple canceller structure will be developed. This will first be

tested against computer generated data simulating the active sonar in the

CZ detection mode. More importantly, the simulation will be run on actual



data from sea tapes to be provided by the Navy. Any changes to the models

necessitated by the simulation runs will be made in the analysis and the

effect of these changes on canceller performance examined.
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1.0 INTRODUCTION

This is the final report on the first phase of a study of a technique for

processing against surface reverberation from the convergence zone in an

active sonar. When attempting to detect a low doppler, submerged conver-

gence zone (CZ) target, this backscatter of the transmitted waveform from

the surface above the target can be the limiting background noise. The

concept involves bistatic or multistatic operation, in which reference

hydrophones spatially separated from the primary transmit /receive array

of the sonar are used to suppress the reverberation in the primary array

output. This is done using a Least Mean Square (LMS) adaptive multiple

canceller structure, which has been used in the past to suppress point

interference in the output of a beamformer 1 ] . The CZ surface reverber-

ation, however, appears as a narrow extended acoustic interference, so

this study addresses the performance of the multiple canceller concept

with extended sources.

The most common (and most practical) algorithm for the implementation

of spatial noise cancellation is the Least Mean Square (LMS) algorithm de-

scribed in [2]. Define the inputs to the algorithms as

d(n) = desired input at n th sample time

x(n) = reference input at n t h sample time.

The LMS algorithm stores the M-dimensional data vector

X(n) = [x(n), x(n-1) .... x(n-M+l)]T (1-1

and computes the filter output,

Ty(n) = W (n) X (n) (1-2)

with

1t
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W(n) = [W0(n), W 1(n), W.. M 1 (n)J

the weight vector of length M. The weights are updated recursively to

minimize the mean squared value of the error signal, defined as

E(n) = d(n) - y(n) (1-3)

This is done by means of a gradient descent approach in which the actual

gradient of the mean squared error is replaced by an estimate of the gradi-

ent extracted from the data vector, X(n). This yields the very simple

weight update equation

W(n+l) = W(n) +pE (n) X(n) (1-4)

where p. is a weight update coefficient that controls the rate of convergence

and stability of the algorithm.

When the inputs to the LMS adaptive structure are zero mean random

sequences that are at least wide sense stationary, the weights given by

(1-1) can be shown to converge in the mean to the discrete Wiener filter

provided p is sufficiently small to assure stability 3 3 . That is, if E[x] de-

notes the expected value of x and

E[d(n)] = E[x(n)] = 0

Rx = E[X(n) xT(n)]
xx k = 0, 1, ... K-1 (1-5)

and

!:dx = E[d(n) X(n)]

then

lim E[W(n)] - R r-dx (1-6)

2



under the appropriate conditions on 1j. Reference [3] shows that (1-6)

occurs if

0 I.< 1/kma x  (1-7)

where Amax is the largest eigenvalue of the covariance matrix, Rxx.

Further, it is shown that the mean of the weights of the adaptive filter

approach the Wiener solution, (1-6), approximately exponentially with the

time constant

1 

(

I min

where - I is expressed in iterations of the filter and X min is the smallest

eigenvalue of the covariance matrix, R xx.

Because the weights are computed from the random input data in (1-4),

they are themselves random, and exhibit fluctuations about the discrete

Wiener solution, (1-6). Therefore, the power in the error, E(n), is greater

than the error that would be achieved by the Wiener weights. This increase

in error power due to algorithm noise is termed the misadjustment [3] of

the algorithm. In general, due to the recursive nature of (1-4), even the

second order statistics of the weights cannot be determined analytically in

closed form. As will be discussed below, one way of approximating the

weight variance is to develop a frequency domain model for the adaptive

filter, as in [4], and to then use [5].

Now, consider using this LMS adaptive filter to adaptively cancel a

single plane wave interference from the output of a beam steered in the di-

rection of a signal of interest. A single hydrophone is chosen as a refer-

ence, providing the reference input to the LMS algorithm, x(n). The de-

sired input, d(n), is the output of the beam steered toward the signal

3



which is assumed to arrive from a different angle than the interference.

Because the interference dominates both the reference hydrophone and

beam outputs, the adaptive filter minimizes the mean squared value, or

power, in F (n) primarily by eliminating the interference component. It

does this by attempting to insert a delay in the reference input equal to

the propagation delay between the phase center of the primary array and the

reference hydrophone, plus a gain equal to the primary array gain. The in-

terference component of the filter output is then nearly coherent with the

primary array output, so that the interference is cancelled in the error wave-

form, which serves as the canceller output. In order to cancel the signal, the

filter would have to adapt to the propagation delay and array gain for the

signal, which differ from those for the interferences because the arrival

angles differ. In doing this, the structure would pass the much stronger

interference, increasing the mean squared error. The adaptive algorithm

therefore converges to a solution which cancels the interference but passes

the signal. In a spatial sense, this can be viewed as steering a null in the

beam response in the direction of the plane wave interference. Generally, the

signal will be somewhat attenuated by the cancellation process, but this will

be tolerable in view of the much greater rejection of the interference.

If the interference must be modelled as more than one, say K, plane

wave sources, then, in general, K spatially separated references will be

needed to allow spatial nulls to be steered in the direction of each. The LMS

algorithm can be configured to use K reference inputs as follows. Let
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xk(n) = kth reference input at n th sample time (k = 0, 1, K-1)

and let the algorithm store the K data vectors of length M,

Xk(n) = (xk(n), xk(n-l), ''' xk(n-M+)] T , k = 0, 1, K-i

The LMS algorithm computes

T

Yk(n) = _k(n) Xk(n), k = 0, 1, K-1 (1-10)

k k th
where Wk(n) is the k weight vector, with the error given by

K-1

(n) = d(n) - I Yk(n), k = 0, 1 ... K-I (1-11)

k= 0

The weights are updated according to

Wk(n+l) = Wk(n) + c(n) Xk(n), k = 0, 1, ... K-I (1-12)

Note that each implementation of (1-10) is a non-recursive digital filter

with time varying weights, so the multiple reference LMS algorithm can be

represented as shown in Figure 1-1. Each reference input is passed through

a non-recursive digital filter, the filter outputs used to form the error, E(n),

by (1- 13), then the error fed back to update the filter weights according to

(1-4).

In many practical situations, the computational requirements of implement-

ing (1-16), (1-17), and (1-18) are prohibitive, and the cancellation must be

done using the so-called frequency domain LMS algorithm [4, 6]. The fre-

quency domain algorithm first Fast Fourier Transforms (FFT's) the reference

and primary inputs, forming
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D.(n) ith FFT coefficient at time n

NI- 1 . 2 -

= I d(m + nM) e (1-13)

m=O

and

Xik(n) = ith FFT coefficient of k th reference at time n

NI-1 . 27rM- I -] - mi

= Z xk(m + nM) e (i = 0, 1, ... M-1) (1-14)

m= U

where M is again the dimension of the Xk(n) data vectors. A single tap com-

plex LMS algorithm is then performed independently in each frequency bin.

Let

Fik(n = the frequency domain weight in the ith FFT bin for the

kth reference at time n

Then the LMS filter output in the ith bin for the kth reference at time n is

Yik(n) = Fik(n) Xik(n) (1-15)

and the error in the ith FFT bin (used to update all K filters) is

K-1

Ei(n)= Di(n) - I Yik(n) (1-16)

k=0

The complex LMS algorithm [7] gives the updated weights as

Fik(n+l) = Fik(n) + Ei(n) Xik(n) (1-17)

7



If required, the time domain canceller output can be obtained by inverse

FFTing the Ei(n).

While this algorithm gives significant computational savings over the

time domain approach, it is not an exact implementation of the time domain

algorithm and can give different results, even in relatively simple cases [4].

A number of practical cancellation problems have been solved using the fre-

quency domain approach, however [8, 9]. When it can be used, it has some

analytical advantages in that it may be possible to determine the variance

of the frequency domain weights as well as the mean using [8]. This allows

the effects of algrorithm noise to be considered analytically.

The C Z surface reverberation differs from interferences usually associ-

ated with LMS spatial cancellation in three ways:

(1) Extent; The first CZ will nominally appear at a range of 30 miles

and have a width of approximately 2 miles, so that it appears to

have a narrow vertical angular extent. In addition, most modern

active sonars have horizontal directivity, so that only a hori-

zontal sector of the CZ is illuminated. The reverberating CZ sur-

face therefore appears as an extended source in both horizontal

and vertical angles. Within this sector, the reverberation is

made up of a multitude of individual reflections, often regarded

as uncorrelated [ 10]. The surface may therefore be regarded as

narrow extended source exhibiting no correlation from angle to

angle. This study therefore addresses the performance of the

canceller with such a source.
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(2) Non-stationarity; In the active sonar environment, the input

statistics to the canceller are markedly non-stationary, consist-

ing of a transmit period followed by periods of reverberation

from various sources, intervals of ambient noise only, and signal

returns. Although the derivation of the LMS adaptive canceller

assumes stationarity of the inputs, it has often been applied in

non-stationary situations by making its convergence time short

enough to track the non-stationarities. An approach to the ap-

plication of the LMS algorithm in the reverberation environment

is also developed in this study and its performance analyzed.

(3) Noise Related to Signal: In most applications of the adaptive

canceller, the signal and noise are derived from different

sources, and are therefore uncorrelated. In the detection of a

target against the background of C Z surface reverberation, the

noise consists of many reflections of the transmitted waveform.

Since reflections of the waveform also make up the signal, the

signal and noise are related. This will not be of central interest

here, since this report concentrates on the signal absent case.

Suppose that instead of consisting of one or more discrete plane wave

sources, the interference is truly extended in that it is distributed in

angle over some finite sector. Given the argument that the adaptive can-

celler is steering nulls in the overall response pattern in the direction of the

interference, it would seem that an extended source could never be completely

cancelled. However, as more and more references are added (K increased),

steering an increasing number of nulls to the interference, it seems clear



that the amount of additional cancellation achieved per added reference

would eventually become quite small. Since the computational cost of adding

a reference is signifieant (requiring an additional LNIS adaptive filter), at

some point the improvement will not be worth the cost. This study examines

the performance of the multiple canceller approach with extended sources

using a Wiener filter model. The amount of cancellation achieved is examined

as a function of the source extent, the number of references, and their

location with respect to the primary array. Of particular interest is the

following

a. The degree of cancellation theoretically achieveable for an

extended source

b. The selection of the number of i-eferences for a given source ex-

tent, taking into account both cancellation performance and

computational cost.

The Final Report is divided into three sections, the first of which is this

Introduction. Section 2 summarizes the results of the study, describes the

general approach used, and discusses the models of the adaptive canceller

and extended interference source. The detailed development of the models

and the derivations of the results given in Section 2 are included as Appen-

dices A through K. Section 3 presents the general conclusions of the study

as to the applicability of the LMS cancellation technique to the rejection of

surface reverberation from the convergence zone. It also discusses areas

where additional study is needed.
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2.0 SUMMARY OF RESULTS

This section presents the results of the study in summary form without

detailed derivations, which are included in the Appendices. Where results

are best illustrated by the use of graphs, typical cases are shown here and

the complete set of curves given in the Appendices. Section 2. 1 discusses

the application of the LMS algorithm in the non-stationary reverberation

environment. Section 2.2 develops the model for the extended interference

source and relates it to surface reverberation from the convergence zone.

In Section 2.3, the frequency domain Wiener filter model for the adaptive

canceller is derived. Section 2.4 shows that there exists an equivalence be-

tween the linear prediction of a bandlimited temporal random process and the

cancellation of an extended source. This equivalence is used to apply a

number of results from linear prediction theory to the problem of interest

here. The general results of Section 2.4 are then specialized to a source

that is uniformly distributed in angle and spatially uncorrelated in Section

2.5. This model is shown to be a reasonable model for CZ surface reverbera-

tion. Performance predictions for the multiple canceller in this enviornment

are presented, and design criteria given for selection of hydrophone spac-

ing and number of references. Section 2.6 discusses the performance of the

canceller with a source producing an exponential CSD at the hydrophone

outputs, and compares this performance to that achieved with the uniform

source of Section 2. 5. Section 2.6 investigates at the effects of the non -

stationarity of the reverberation on the performance of the adaptive cancel-

ler. Finally, Section 2. 7 takes a preliminary look at the response of the

array to a plane wave signal in the presence of an extended source.
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2. 1 Canceller Structure for Application in the Non-Stationary Reverber-

ation Environment. As pointed out in the Introduction, the development of

the LMS canceller structure is based upon the stationarity of the inputs,

although the adaptive algorithm itself has been applied to non-stationary

problems [9, 11]. This is done by making the time constant of the adaptation

process short enough that the weights can "track" the non-stationarities.

This requires use of value of i.larger than would be needed in a stationary

environment with a resulting increase in algorithm noise. There is there-

fore a trade-off between the ability of the algorithm to follow input dynamics

and the algorithm noise.

The application of the LMS canceller approach being considered here

departs from this usual approach to non-stationary inputs. The active sonar

environment, taken as a whole, is markedly non-stationary, consisting of

periods during which reverberation from various sources (surface, bottom,

convergence zone, etc) dominates the noise field. Between these periods of

reverberation the ambient noise field will be the main limitation on sonar per-

formance. However, within a period of reverberation from a particular source,

the reverberation is often regarded as a stationary random process. Hence.

it may be possible to avoid the need for increasing vi to track input dynamics

by adapting the weights only when the convergence zone (CZ) reverberation

is present. During these periods, the reverberation dominates the ambient

noise component and the signal, so it should be possible to detect its presence

reliability.

These considerations suggest the following canceller structure. Because

the propagation distance to the C Z is so much greater than that associated
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with other forms of reverberation, it is possible to exclude all other rever-

beration from influencing the canceller by freezing the weights for T w sec -

onds after each transmission. After T w seconds, it can be assumed that the

input to the canceller is either ambient noise or CZ surface reverberation

(possibly with a target present). The presence of the reverberation is then

determined by a simple energy detection in the reverberation band of the

primary array output, and the weights adapted only during its presence.

This structure is shown schematically in Figure 2- 1. If the detector can de-

termine the presence of the C Z reverberation perfectly, the weights only

adapt in the presence of the reverberation. Given that this reverberation is

stationary, as assumed above, the inputs as seen by the weight adaptation

process are stationary at all times, so that they converge to the optimal

weights that would occur if the reverberation were always present. The

selection of 1i can be made solely on the basis of acceptable algorithms mis-

adjustment. False alarms in the detector will cause the weights to adapt

in an ambient noise background, which will degrade the effectiveness of the

canceller. False dismissals in the detector will result in the weights being

frozen during the presence of the CZ reverberation, so that the algorithm

will take longer to change. It is anticipated, though, that the high rever-

beration to ambient noise ratio associated with this problem will allow detector

operation at a low probability of error.

An alternative approach can be based on the well known fact [ 10] that

the LMS adaptive algorithm adapts much more rapidly in an environment

producing correlation between its inputs (such as reverberation from any

13
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source) than to one producing uncorrelated inputs (such as ambient noise

field would). That is, the filter "learns" the correlation properties of an input

rapidly in comparison to the way it "forgets" those properties once the cor-

relation disappears. Therefore, in order to maintain the properties of the

convergence zone reverberation in the filter weights, it is first essential

that all other forms of reverberation be excluded from the adaptation proc-

ess by inhibiting the adaptation of the weights for T w seconds after each

transmission. From the point of view of the adaptive weights, then, the

input consists of the intervals [nT + T w , (n+l)T] for n = 1. 2, ... con-

catenated together to form a continuous input sequence. This concatenated

input is then sampled every T seconds to produce the inputs x(n) and d(n).

The question is how much the adaptation in ambient noise only, albeit slow,

degrades the operation of the canceller when the reverberation actually com-

mences. This is considered in Section 2.7.

2.2 Model for the Acoustic Field. The majority of the results of this

study are based upon a far field extended source model developed in

Appendix A for the particular array geometry shown in Figure 2-2. In this

geometry, the K reference hydrophones are configured in a line array with

an inter-hydrophone spacing of d feet. These K references are to be used

in an LMS canceller to suppress an extended interference from the output of

a single omnidirectional hydrophone located md feet from the nearest reference

and colinear with the reference line array. In this model, the transmit/

receive array of the sonar has been replaced by a single omnidirectional hy-

drophone. The impact of this simplification is discussed later. I=
15!
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Figure 2-2. Array Geometry for Far Field Model
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The extended interference is assumed to be distributed in a horizontal

plane that contains the line array, as shown in Figure 2-2. The acoustic

energy arriving at the array from the interference at any angle,' , is

assumed to produce a plane wave across the entire array (including refer-

ences and primary). This requires that the distance to any point on the

interference be large in comparison to the array dimensions so that the

wavefront curvature is negligible. As is usually done with plane wave

models, it is also assumed that the propagation losses from a point on the

source to any hydrophone is the same, so that the difference in propagation

to different hydrophones is characterized in terms of delay only. The com-

mon propagation losses can be lumped with the source characteristics.

Statistically, it is assumed that the acoustic energy arriving at each

angle, 0, from the interference is a zero mean, stationary random process.

In the general model, the arrivals from two angles, p1' and 2' are allowed to

be correlated, producing a cross-spectral density (single frequency correla-

tion) between the arrivals of S 0 2' c). Thus the spectral density of the

intererence at any arrival angle, 0, is SI(0, 0 , w). In addition to the inter-

ference, the acoustic field is assumed to have an isotropic background, pro-

ducing zero mean noise at the output of each hydrophone. This noise is

assumed to be uncorrelated from hydrophone to hydrophone and to have

spectral density a 2(M).
n

Next, in Appendix A. 1 the model is restricted to narrow extended inter-

ferences that are distributed over a narrow angular sector 0 -f ,0 +01.

This allows an approximation leading to a two-dimensional Fourier transform

relationship between the source angular distribution and the cross-spectral

17



density (CSD) of the hydrophone outputs. Appendix A. 2 adds the additional

assumption of a spatially uncorrelated interference, for which

SI(0011 (2',w) = Si( 1001 , w) 6(001 4).2)  (2-1)

In this case, the CSD between the outputs of the pth and qth reference

hydrophones is given by

-j-c- (p-q) coso +j-- (p-q) 1 sin4 °
Se(p,q,-) = e f SI(0 0+0,w ) e cd4

2(W
+ n n) pq

(2-2)

which is again a Fourier transform relationship. Expression (2-2) is ex-

ploited in Section 2.4, which describes some general results for the multiple

canceller structure.

Although it is not immediately apparent that this simple, far field model

can be used to model surface reverberation from the convergence zone,

Appendix B considers two source geometries representative of this reverbera-

tion and shows that they reduce to the form of the far field model under very

reasonable assumptions. Suppose that the sonar transmitter has a horizontal

beamwidth of 28 1 degrees, so that it only illuminates a sector of the annulus

comprising the convergence zone, which has inside radius R and outside

radius R 0 . The illuminated sector is assumed to be centered about the angle

6 o , and the transmitter/receiver is located D feet below the surface, as

shown in Figure 2-3. The reference hydrophones are placed d feet apart
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along the negative y axis, with the distance between the primary and the

closest reference md feet. The reverberation from each point on the sector

of the annulus is assumed to propagate via a straight line (direct) path to

the hydrophones, and can be regarded as a plane wave across the array.

The ambient noise is assumed to produce noise with spectral density a 2(W)n

which is uncorrelated from hydrophone to hydrophone. This can be viewed

as a model of the convergence zone surface reverberation, except that the

propagation paths are direct rather than along the refracted paths associated

with the convergence zone. It is shown in Appendix B that when the rever-

beration is spatially uncorrelated, the shape of the propagation paths does

not affect the hydrophone CSD except in terms of the overall interference

strength (this is incorporated in the interference spectrum). The assumption

that the reverberation is uncorrelated from point to point is commonly made

in active sonar (see, for example, Van Trees [9]) and will be made here.

Now, let SI(P, 0, w) be the spectral density of the reverberation from

the point on the surface at range P and angle 0, with the propagation losses

incorporated in the source. It is assumed that this spectral density is

separable in range,

SI(p, , ) = S 1r(P, W) S1 a(O' ) (2-3)

Then under the additional assumptions that 0, is small enough that

cos 1  1

sin 01 1 el (2-4)

and that D <<P, the CSD between the pth and qth hydrophones in the array

is
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.Wd

2- - - (p-q) cos e

Se(p~q ) = n pq r

01

+o .wd
0 -- (p-q) Osin 00

Sf(e+.) e (2-5)

with
R

Gr(W) = SIr(pw)P dp (2-6)

R 
I

Comparing (2-5) with (2-2) shows that the model illustrated in Figure 2-3

produces the same form for the hydrophone output CSD as the far field

source with Si(0+(0 ,w) replaced by the angular source spectral density

SIa(0+0o,w)and with the additional factor G r (). This additonal factor can

just be regarded as part of the source spectral density in the far field

model of Appendix A. Hence. the far field model developed in Appendix A

can be applied to the CZ surface reverberation problem.

Appendix B also develops a second model for the CZ reverberation that

utilizes the assumption of plane wave arrivals at the array from each point

on the source, but distributes these arrivals on the horizontal sector, 0

eo - 0 1, 00 + 1] ' and the vertical sector,0cto -s,00 +4] as shown in

Figure 2-4. When the reflections from each point on the surface are uncor-

related, the arrivals from different angles will also be uncorrelated. As be-

fore, the horizontal extent is limited by the horizontal directivity of the
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transmitter. The vertical sector comprises those angles producing CZ propa-

gation. Let S 1(0,.) be the spectral density of the arrival at horizontal

angle, E , and vertical angle, b, and assume that

S I(E,), ) = Sih (, ) Siv(O, -) (2-7)

That is, S (8 $, ,) is separable into a horizontal density, S Ih(E.), and a

vertical density, Siv( (,(0, ). It is assumed that e is small in the sense of

(2-4), and that

max bb a 00 +*]<< 1 (2-8)

so that cos(maxiS 0 -( .0 +4] ] - 1. This requires that the vertical arrivals

be clustered near horizontal, and is consistent with CZ arrivals in a surface

ship sonar. Then the CSD of the outputs of the pth and qth hydrophone is

- -d (p-q) cosG0
s (p,q,w) n(W)6 +e 0 G(W)

e n pq
9 1

_d (p-q) Gsin 0I SI(,w) e dO

0 (2-9)

+ ¢

where G ,(G) Siv(, ) 2 d

Again, comparison of (2-9) with (2-4) reveals that the model of Figure 2-6

produces the same hydrophone CSD as the far field model of Appendix A,

so that the latter can be used to study the CZ surface reverberation problem.

An important special case of the far field model is that of uniform source

spectral density (2
1( )  $ [0 -# 0 i]Si(0,w) = (2-1I0)

, otherwise
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The hydrophone output CSD then becomes

2 w)3 +a (W) snI'c(-)Oi
e n pq I rn d (p-q) sinw0

- d (p-q) cos

e (2-11)

Note that for the surface model (Figure 2-3) and the vertical arrival model

(Figure 2-4), (2-10) is replaced by

Sia(OM = Slv(0,w) = c 2 ' ' -O 81, % +8 1]

S,0, otherwise

This requires that the reverberation intensity does not vary as a function

of bearing within the transmitter main lobe.

It is important to note the behavior of the hydrophone output CSD,

Se(pq,o.,), as the extended source approaches end fire,0 0 = 0. When00 = 0,

(2-2) reduces to

f _' 1 (L_ (p-q)

s (p,q,w = or 2(W)f + [ e (2-12)
e n pq SI(0 +0, c,)

which is exactly the CSD produced by a single end fire plane wave with

spectral density

SI 
0 + 0,')0 dol

Similarly, when 00 = 0, (2-11) becomes
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e- 95-Ce ( p -q )
se(pq,u1) = 26pq + 2 Oaf(W) e (2-13)

which is again the hydrophone CSD of an end fire plane wave. Further,

(2-11) indicates that as the source approaches endfire, its hydrophone out-

put CSD broadens in terms of the difference (p-q), so that it looks like the

CSD is that of a narrower source. It is as if the effective extent of the

source is 2 sin 0 rather than the actual source extent of 2M. It is important

to show that this apparent narrowing of the extended source near end fire

is a characteristic of the physical problem of cancelling an extended source

using a line array of references, and not just an anomaly introduced by the

model or by approximations within the model.

Although analysis of the general case has not been completed, a number

of numerical evaluations of the exact hydrophone output CSD have been

made for the special case of a uniform source. These agree very well with

the CSD derived using the narrow source approximation, given by (2-11) in

2
the case where an (w) = 0. This tends to support the validity of the model

near end-fire in the uniform source case, and suggest that the apparent

source comparession actually occurs.

In most cases of interest, the primary sensor will not be a single omnidi-

rectional hydrophone but an array of hydrophones steered in some particular

direction. Appendix I investigates the applicability of the single hydrophone

model to this more realistic case. It considers a primary input derived from

25
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a line array of N hydrophones spaced every dp feet and located a distance

Ld feet from the reference array as shown in Figure 2-5. The results show

that the equivalent model of Figure 2-6, in which the primary array is re-

placed by a single directional hydrophone, produces the same statistics for

the reference and primary inputs if

(a) the single primary hydrophone is placed Ld feet from the ref-

erence array

(b) the primary hydrophone has the same directional response, H()

as the primary array

(c) the ambient noise component of the primary hydrophone output

has spectral density

a = a2 a 2(C) (2-14)

Ln=O I
th 2

where a is the shading applied to the n t h hydrophone andan (o) is then n

spectral density of the output of a single hydrophone on in the primary array

being replaced. Hence, in the computation of the spectral density of the

primary hydrophone output and the cross-spectral density between the pri-

mary and the references (as required to evaluate the canceller performance,

Section 2.3), the source CSD function S1(0, w) i.e. modified by the response,

2.3 Model for the Adaptive Canceller. In this study, the performance

of the adaptive canceller is analyzed under the assumption that the inputs

to the canceller are stationary random processes. This requires that the

26



z~~p indr y dx.

,teering angle

0-I)d (N-I) d -

d 44.d.4.d Ld - dP

, I 3 . . . 0 2-I

-~ayN-i

Ii

re feec

hyd roa 0hones

po I a y -

II primary

input

Figure 2-5. Use of a Line Array as the Primary Input

4 (K-1)d

Directional Response, H( )

K Ld

Figure 2-6. Equivalent Model for Primary Hydrophone Array

27



weights only be adapted during the time when the reverberation is present.

Section 2. 1 described a canceller configuration in which the weights are

frozen except when a detector indicates that the CZ surface reverberation

is present. The analysis which is discussed here therefore applies to this

canceller structure when the detector determines the presence of the re-

verberation with no errors. Also described in Section 2. 1 is a second con -

figuration of the adaptive canceller to reverberation in which the weights

continue to adapt when only ambient noise is present. The performance of

this canceller configuration will therefore be degraded somewhat from the

performance predicted using the stationary input canceller model. If the

adaptation in ambient noise is very slow and the length of time during which

only ambient noise is present is relatively short, then the results using the

stationary model will be a good approximation to the actual performance of

the second canceller configuration. The degree to which the performance of

these two canceller configurations is degraded from the stationary model is

discussed in Section 2.7 and analyzed in detail in Appendix J.

The multiple LMS adaptive canceller structure of Figure 1- 1 is analyzed

by replacing each of the LMS adaptive filters with a continuous Wiener filter.

In a stationary environment, the LMS adaptive filter converges in the mean

to the discrete Wiener filter. In turn, the discrete Wiener filter will be a

good approximation to the continuous Wiener filter if the sampling rate high

enough and the filter long enough for the discrete impulse response to ap-

proximate that of the continuous filter. This will be the case in any well

designed adaptive canceller. Therefore, the mean of the converged INS

adaptive filter weights (which comprise its impulse response) will be well
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approximated by the continuous Wiener filter. The actual weights (impulse

response) of the converged LMS adaptive canceller randomly fluctuate about

the mean weights, and these fluctuations increase the canceller output power

above that of the discrete Wiener filter. However, these fluctuations can be

made arbitrarily small in a stationary environment by making the feedback

coefficient, ju, small. The use of the continuous Wiener filter to model the

LMS adaptive canceller can therefore be regarded as neglecting the effects

of sampling, finite filter length, and algorithm noise, all of which will be

small in a well-designed canceller. Obviously, the Wiener filter analysis also

applies only to the converged LMS canceller, and provides no information as

to its transient response.

Appendix C derives the transfer functions of the Wiener canceller illus-

trated in Figure 2-7 in terms of the second order statistics of the hydro-

phone outputs. These are characterized in the frequency domain by S 1 1(w)

the power spectral density of the primary hydrophone output, Se (w), the

cross-spectral density (CSD) matrix of the K reference hydrophone outputs,

defined as

Se(W) = (Se(P,q~ w)) p = 0, 1, ... K-1 (2-15)

q = 0, 1, ... K-1

with se (p,q,w) the CSD between the outputs of the pth and qth hydrophones

as given in Section 2.2, and by s 1(W), the CSD vector between the primary

and the references. With the primary hydrophone is md feet from the near-

est reference, as shown in Figure 2-2,

S1 1 (W) = Se(K +m - 1, K + m - 1, w) (2-16)
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and

s(CW) = e k0,K+m-l), Se(l,K+m-l) ..... s (K-1,K+m-l)]T

(2-17)

In this notation, the transfer functions of the K filters in Figure 2-12 are

given by

H 0(w) = [H 0(w),HI(w) .... H (c )]T = S-I (W)S(w)o k1e -1
(2-18)

and the power spectral density of the canceller output is

E (m,w) = SI(W) - s((W) S ) ) (2-19)

where the subscript K on EK(m, w) indicates that K references are used in

the canceller and m is the distance from the reference array to the canceller

in units of d feet. Since the models described in Section 2.2 provide

Se(p,q,w), (2-15), (2-16), and (2-17) can be used to evaluate the cancel-eI
ler output spectrum (2-19). This is the primary vehicle for the analyses re-

ported here.

2.4 Results From Linear Prediction Theory. Proceeding from the

general models developed in Appendices A and B, and from the canceller

model derived in Appendix C, Appendix D shows that the Least Mean Square

cancellation of a spatially uncorrelated, narrow extended source is equiva-

lent to the linear minimum mean square error prediction of a bandlimited

random process in noise. This equivalence allows direct application of known

results from linear prediction theory to the extended source cancellation

problem of interest in this report. The most useful of these results involve

the irreducible canceller output spectrum, defined as
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E,(m, u) r= lin EK(m,w) (2-20)

K-o

Recall from Section 2. 1 that the acoustic field model requires that the plane

wave assumption be valid across the entire receiving array, which will be

violated as K-oo(since the length of the reference array becomes infinite).

Therefore, E (m,,w) must be regarded as a lower bound to the canceller

output spectrum.

When m=l, so that the entire array is uniformly spaced with spacing, d,

the irreducible canceller output spectrum is shown to be given by

EM(l' U) = exp 2 f log He(a, w) dal (2-21)

where He( ,w) is the wave number-frequency spectrum (WNFS) of the hy-

drophone outputs. For a narrow source of angular extent, 2¢, this is related

directly to the source spectral density, Si(I ,u)), as follows

H (a,w )  a 2 ()o) + 1 S2 (it +,0W') Rect a-2-L-] E ,T]

k=-oc (2-22)

where
d
= sin 0 and W = -Y

When w<1/2, (2-22) reduces to

Hna )=a2 ( W + is I 7- + 0,1w) Reet (2-23)

The condition that W!5 1/2 therefore eliminates spatial aliases from the

WNFS, and, as such, can be regarded as a sampling cirterion.
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An important footnote to equation (2-21) is that when log [H e(a,w)] is

not integrable, the right hand side must be replaced by zero. Appendix D

shows that if there is no ambient noise and the criterion )'$_51/2 is met,

then E(1, w) = 0, so that at least asymptotically, the extended source can

be cancelled to zero. However, when ambient noise is present.

2E0,(,w) >o n(w) ( 2- 24)
n

so that the extended source can never be cancelled to the ambient noise

floor.

When there is no ambient noise present, not only can the irrducible can-

celler output power, E,( 1,(,), be shown to be zero, but the canceller output

spectrum, EK(l,w), can be shown to approach zero asymptotically in K, the

number of references. That is, EK( 1,w) is asymptotic to

L(K) = G(-)[sin(fV)] 2K+l (2-25)

where G(M) depends upon the source extent, t, the sampling parameter, y,

and upon the WNFS of the hydrophone output, but not upon K (G(W) is

given by equation D-61 of Appendix D). The rate at which this asymptotic

approaches zero does not depend upon the shape of the source, as can be

seen from (2-25). It is pointed out in Section 2.5 that even for relatively

small K, L(K) is a good approximation to Ek(l,,). Further, L(K) will be

useful in predicting the value of Ek( 1,w) when ambient noise present, as

developed in Appendix K.

The more general case of m > 1 is also considered in Appendix D. It is

shown that if the irreducible canceller output spectrum for m=l, that is

E 0 1,w), is zero, then
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E,(m.w) = 0 m >1 (2-26)

This means that if the output spectrum gives asymptotically to zero with K

for m=l, then it will do so for m > 1, too. Although there is no result

analogous to (2-25) for m > I indicating exponential behavior, numerical

results discussed in Section 2.5 suggest that Ek(m,w) also goes to zero ex-

ponentially but at a slower rate. As in the case of m=l, the irreducible out-

put spectrum is always non-zero when ambient noise is present, so this

result applies only to the noise free case. It is also shown that EW(m,W) is

a non-decreasing sequence in m, so that the irreducible output spectrum,

which places a floor on the cancellation performance, cannot decrease as the

references are moved farther from the primary (m increases). In fact, for

the cases of interest here, EO(m,w) always increases with m.

Appendix D also develops an implicit expression for the cancellation

floor, F,(m,w), in terms of the source spatial distribution, SI It is

shown that

m-i

E(m, w) = I Ck(W)12 (2-27)
k=0

where

Co(i) = exp log [He(C, w)] d (2-28)

and the remaining Ck's satisfy

I Cn(W) Zn = exp{ 2 + I bn(W) Z n (2-29)

n=0 n=4
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with

bn (W) l fiog [He(ci,w)] e Jnada (2-30)

-ir

Again, H e(iow) is the hydrophone output WNFS given by (2-22) or (2-23)

in terms of S1 (0 ,w ). The implicit relationship, (2-29), can be solved explicitly

for small m (see Appendix D, supplement I), but the expressions are quite

complicated and give little insight into the canceller performance.

2.5 Results for a Uniform Spatially Uncorrelated Interference. Suppose

that the model shown in Figure 2-3 is used to represent the surface rever-

beration from the C Z. A reasonable model for the reverberation is that the

intensity of the reverberation does not vary with bearing in the mainlobe

of the transmitted signal, so that, using (2-3)

(u)), e 0o - 0 1' 00 + 011

Sla(GW) =t 0, otherwise (2-31)

where 9 is assumed small in the sense of (2-4). Incorporating two way

cylindrical spreading loss into the source characteristics suggests that

Sir(PW) - 1 (2-32)

so that the reverberation falls off linearly with range. Then from (2-6),

Sr(WO) = 2 21R - R (2-33)

and the hydrophone output CSD is
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.wd
2 -~1 u-- (p-cl) cos% F 2 ~

S(P,q,w) a (WR)6pq 4 R R (w)

sin - d (p-q) 9 sin 0(-4

c(-)sin GO001
which is just a straight forward extension of (2-11) using (2-5). Hence

the uniform source model developed in Appendix A can be used to investi-

gate the performance of the canceller with CZ surface reverberation if the

source spectrum,a 2(u), in (2-10) is replaced bya 9 (w) R 02R_] /4.

Appendix F uses uniform source model and the results of Appendix D

to determine the cancellation floor, E .(1, w), for the CZ surface reverbera-

tion modelled as in (2-34). A significant result is the existence of a spatial

sampling criterion relating the hydrophone spacing

Y sin0 (2-35)
0

and the source extent, 0 i . It is shown that if

"YO1 a. (2-36)

then only very slight cancellation is possible. One the other hand, if

1 <2 (2-37)

then the cancellation floor is given by

2W

= (W) 1 + 79R1 < (2-38)

where
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1 [2 21 22(INR -. I [R 0  R R1 - 6 i.(1 (2-39)

is the interference to noise ratio at the array, and

W = Y 61  (2-40)

Using (2-38), the cancellation floor relative to the input power,o n ( )(1+INR).

is

22 =,il~ [14-IN RI 1 + INR , W 1 (2-41)

0'n2 (2) ( 1+INR), 2W -W
n

This is plotted in Figure 2-8 for values of W between 0 and 0.5, and for

INR's of 40, 30, and 20 dB. It can be seen that only when Wis small is

cancellation to near the ambient noise floor possible.

A second useful result derived in Appendix F for the uniform source

case is an asymptote in K for EK(1, o) when the ambient noise is not present.

This is developed using the form of the Strong Szego Limit Theorem [12]

discussed in Appendix D. It is shown that for 02(w) = 0 and W<1/2, Ek(1,..)

is asymptotic in K to

2e0a (W)K1
A(K) - e - [sinrW] 2 K +  W< (2-42)

2W

that is asymptotically, EK(1, w) decreases asymptotically with K. Although

the noise free case is not of practical interest, it will be shown later that

A(K) is useful in describing the canceller behavior in the noise present case.

The results of Figure 2-8 indicate that the cancellation can be made

arbitrarily close to the noise floor by making d small, which moves the

references closer together. However, it should be noted that as d gets
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smaller, the references are also moving closer to the primary in this model,

accounting for some of the cancellation improvement. A meaningful examination

of the performance therefore requires evaluation of E (m, ), where the refer-

ence are md feet from the primary. This would allow determination of the cancel-

lation floor as the references are moved closer together but maintained a con-

stant distance from the primary. Although Appendix D developed an expres-

sion, (2-29), which allows explicit determination of E(m, w), the expres-

sions are very complex and yield no insight.

An alternative approach is to evaluate EK(m,w) numerically, using the

results developed in Appendix E. Using the fact that the eigenvalues and

eigenvectors of the reference hydrophone output CSD matrix can be ex-

pressed in terms of the Discrete Prolate Spheroidal Sequences (DPSS's) and

their associated eigenvalues [ 13], it is shown that

E(.2 291r(oEK(m, '.0) = r(7 () + 2 W

K 2
bIXk(K,W) 1

K - 2 1Ak( ,WkA (K,W)
2W I~ 2Wo n (w)+20 (cAI(KW)J k

V(k)m 1 (K,W) (2-43)

where k is the number of references, as before, and

{ (k (K,W)} l k th DPSS

Xk(K,W) = eigenvalue associated with the kth DPSS.

The DPSS and their eigenvalues are easily evaluated on the computer,

which allows numerical evaluation of EK(m,) from (2-42). Appendix K
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includes extensive plots of EK(m,,) as a function of K for various m and values

of W from 10- 4 to 5 x 10- 1. Interference-to-noise ratios of 40 dB, 30 dB, and

20 dB are given, as well as some results in the ambient noise free case.

In the ambient noise free case, plots show that the asymptote, A(K), given

in (2-42), is an excellent approximation to Ek(1,,1) even for small K, that is

2 ( =0
2 ()2W [sin7 W]2K+l, 1 (2-43)

Recall from Section 2.4 that an extended source cannot be cancelled to the

ambient noise floor, but approaches some cancellation floor, E(1, ) > 2 C().n

However, it seems reasonable that the noise present case should behave

approximately like (2-43) if the interference to noise ratio is high and the

cancellation achieved, EK(iww) is well above the cancellation floor, E ( 1,w).

This conjecture is shown to be valid by comparison with numerical results

later.

The numerical results from Appendix K for the ambient noise present

case are typified by Figures 2-9'through 2-11, which show the 40 dB INR

for W = 10 - , 102, and 10 respectively, and by Figures 2-12, 2-13, and

2-14 which show the same cases for INR = 20 dB. Also shown on these fig-

ures (and the others in Appendix K) are the cancellation floor, Eo(,w),

computed using (2-41) and the approximate value of EK(1, w) in the noise

free case from (2-43). Note that E (1,0w) is indistinguishable from the

noise floor for W = 10- 2 . It can be seen that the canceller output spectrum,

EK(l,w), approaches the floor quite rapidly at first, following the asymptote,

(2-42). However, there is a pronounced inflection point above which the can-

cellation floor is approached slowly. This point is very significant from the
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point of view of the cost of cancellation improvement per dB. Suppose the

inflection occurs at K = K Then there is a definite "law of diminishing

returns" in using more than K 0 references, since each additional reference

incurs the computational cost of another LMS adaptive filter, regardless of

the additional cancellation it provides. For example, in Figure 2-15, use of

2 references achieves about 33 dB of cancellation, while use of 6 additional

references only improves the cancellation 3-4 drB.

It is shown in Appendix K that this inflection point occurs at

approximately

K 0 = [KIJ (2-44)

where [x] is the smallest integer greater than or equal to x and

KI = [log(sin 7 W)] - (2W-1) log - -1 , W < (2-45)

The parameter K I is just the intersection of the asymptote, (2-42) and the

cancellation floor (2-41). Choosing K = K 0 (for m=1) does not mean that

further cancellation is not possible, but that this additional cancellation is

costly.

The number, K,, provides insight as to how the number of references

required in a given situation changes with W and with INR. From (2-45),

it can be seen that K I is linear in 10 log (INR), which is the interference-

to-noise ratio in dB. The slope of K I with respect to 10 log (lNR) is

d K 1  1 2W-i

d (10 log (INR)) M log (sinrW) (2-46)
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so that approximately (2W-i) /(20 log (sin -TW)) references are required per dB

of INR. Figure 2-15 shows K, plotted as a function of 10 log (INR) for vari-

ous W. The dependence on the interference-to-noise ratio is quite weak

when W <0.01, that is, when the interferences are very narrow.

The dependence of II on W is more complicated as shown in Figure 2-16,

which shows KI plotted as a function of W for INR = 20, 30, and 40 dB. For

-22
small W (say, W <10 - 2 ) the dependence of K I on W is very weak, regardless

of INR. As W increases above 102, the value of K I begins to increase

rapidly with W, going asymptotically to infinity at W = 1/2. Recalling that

no cancellation is possible when W = 1/2, it would be expected that K I -

at this point.

Now, suppose the criterion K = K0 is used to select the number of

references used in a given situation. Figure 2-17 shows that the cancella-

tion achieved is within several dB of the cancellation floor, (2-41) for this

choice of K. In fact, it can be seen that the value ofEK (1,-.) is very nearly

log (INR) dB above the floor, so that

2W
E (1, w) -_(INR)0  E.( 1,) 2 0a (w)(INR) _- 1 + ±2.K0  1e [ 2W]

(2-47)

provided that (INR) 0 * 1 E (1,w) < 2e ( ) + 2 (w). This condition just

assures that the approximation is not used when it would produce an arrar-

ent increase in the interference power relative to the uncancelled primary

output. If INR >>1 and W < 1, as it will be in all cases of interest, (2-47)

can be approximated as
2KW- 2.9 -2W

E (1,O) : 2 2 (M) (INR)2W- (2W) (2-48)

05
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For 0< W < 1, (2W) -2W is within about 1.6 dB of unity, so

EK (1, 2 e () (INR) 2W-.9 (2-49)
0 0 e

The cancellation achieved is then approximately

EK 0(l,() (INR) 2 W+O.1 2W-. 9

CK 0(2) 2 + 2 1 + INR (INR)

0 n e

for INR >- 1. Expressed in dB, there yields

10 log CK (1,u)) - -0.9 [10 log(INR)] + 2W [10 log INRI (2-51)

The interference rejection in dB varies approximately linearly with both

the interference to noise ration in dB and the paramter W. This result is

valid over the range 10 S W-< 0.45 and 102< INR a 10 4 .

Examination of the numerical results of Appendix K shows for any given

selection of K and W, the curves of Ek(m,2) for m > 1 have roughly the same

shape as that of Ek(1, w) and, in particular, have the same inflection point

in K. Therefore, the value of K 0 given above is suitable as a guide to the

selection of the number of references, K, even when m > 1. For some values

of W, however, Ek (m,,), m > 1, falls off somewhat faster with K > K 0 than

EK (1.) does. For example, in Figure 2-10, with m=1 and K 0 =2 yielding

about 33 dB of cancellation. Six additional references (K=8) gives only

3-4 dB more cancellation, so choosing K = K0 seems justified. However,

for the same case with m=5, K = K 0 = 2 provides 22 dB of cancellation, while

using only 2 more references gives 6 dB more cancellation. Thus. K 0 appears

to be a rougher guideline when it is used for m > 1. Of course, there will

always be some ambiguity as to how much rejection must be provided by a
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reference to justify its use. Certainly in any given design situation, K0

can be used as a "rule of thumb," with final choice of K made by referral

to the curves given in Appendix K.

The numerical procedure for calculating EK (m,-) as given in Appendix

K allow assessment of the effects of changing the hydrophone spacing, d,

while holding the distance from the primary to the closest reference (md)

constant. If d is divided by A (reducing hydrophone spacing), then m is

multiplied by A to make md constant. The results of this are shown in Fig-

ures 2-18, 2-19, 2-20, and 2-21. These curves show EK(m,w) as a function

of K for va-ious values of A, where

m =

and

(d 0 /4)

W W /A - 1 sin o  (2-52)

Hence, the curves can be interpreted as varying spacing d, while holding

md constant. Figures 2-18, 2-19, 2-20, and 2-21 use W° = .1, .05, .005, and

.001 respectively, and vary m over the range indicated on the figures. The

plots are all for an INR of 40 dB. Recall that as m was increased for fixed W

and K (that is, as the reference array is moved farther from the primary with

fixed spacing between reference hydrophones) the canceller output spectrum

increased monotonically. The situation is quite different when the reference

spacing is changed holding the distance to the primary constant. The be-

havior is not monotonic, and the EK (m,w) may increase or decrease depend-

int upon W0 and K. The details of this behavior cannot be predicted from

the analytical results at present, and will be investigated further in the next

phase of the study.
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Figure 2-18
Canceller OutDut Spectrum vs K
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Figure 2-19
Canceller Output Spectrum vs K
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Figure 2-20
Canceller Outputs Spectrum vs K
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Figure 2-2I
Canceller Output Spectrum vs K
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2.6 Cancellation for an Extended Interference Producing an Exponential

Hydrophone Output CSD. It is quite common in the study of bandlimited

temporal random processes to model the process as having an exponential

correlation function.

p('") = .2 e - BII (2-53)

where 0.2 is the power of the process and where B is the bandwidth. This

correlation function has the advantage of being representative of many

physical processes while having nice analytical properties. In particular,

given a sequence of N samples, uniformly spaced m time, of such a process,

the correlation matrix of the N samples is invertible explicitly (this is dis-

cussed thoroughly in Appendix G). It therefore seemed reasonable to con-

sider a source producing an exponential hydro hone output CSD and the

performance of the canceller with such an interference.

Appendix G assumes the same hydrophone geometry as Figure 2-2, but

assumes that the extended interference produces the hydrophone output CSD

2 ( 2 -B(cu)(p-qjd (2-54)Se(pq, w) =- n (W)8pq . a) e

between the outputs of the pth and qth references, where B(co) is a spatial

bandwidth. Using the results of Appendix D and the special properties of

the CSD matrix produced by (2-54), the irreducible canceller output power,

E (m, ca), can be determined in closed form for arbitrary m. It is shown that

F.0 m,c() = or2(t) .(1p2m)4 (1.-p2m

2812p m (2-55)

,( + p 2 )++3 2) + ( 1+ p 2)+(,i p 2) 2 (2 p )2
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where

p e-B(w)d (2-56)

and

2
at2(CO) ( 2- 57)

I

In the interference only (ambient noise free) case, ft 0 and (2-55) re-

duces to

E..',m,w) =a2 ()(1-p2m)= 2(2()(1 - e-2mB(w)d),o- 2 (W) = 0

(2-58)

From Appendix G, however, (2-58) is just the cancellation that would be

achieved using a single reference placed md feet from the primary. There-

fore, use of more than one reference (K > 1) does not improve canceller

performance. This is a fundamental difference between the uniform inter-

ference discussed in Section 2.5 and the one producing the exponential CSD

of (2-54). Recall that for the uniformly distributed source

lim EK(m,',) = 0
K-*oo

The difference in the behavior of EK(m, w) for the two hydrophone output
Ki

CSD's can be explained in terms of the special nature of the exponential

CSD. It can be shown that the sequence of hydrophone outputs, taken

at a single frequency (in the interference only case), are a first order

Markov sequence. As a result, the optimal canceller uses only the closest

reference, regardless of how many are possible.

Figures 2-22 and 2-23 plot the irreducible canceller output power

relative to the input power given by (2-55) as a function of p for values of
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10 log (1/6) of 40 and 20 dB, respectively. It can be seen that cancellation

to near the noise floor, n ( w), requires that the primary and references be

very highly correlated. This is again due to the Markov nature of the hydro-

phone outputs under the exponential CSD. At high interference to noise

ratio, the optimal canceller uses only the reference closest to the primary and

the output power is proportional to (1 - p2m). Additional references have no

effect, so the canceller depends completely on the proximity of the closest

references to the primary to achieve cancellation. Hence, p must be very

close to unity to produce cancellation to near the noise floor.

The canceller performance with the exponential hydrophone output CSD

can be compared with that achieved in the presence of a uniform interference

(producing a sin x/x shaped CSD) by noting that the parameter B(W)d in

the exponential case plays the same role as

W=d = sin

in the uniform case. Appendix G makes the following observations:

(a) If W ! 1/2 in the sin x/x case, virtually no cancellation is

achievable, as already observed in Section 2.5. No such sampl-

ing criterion is present in the exponential case, but cancella-

tion is still severely limited for B(wa)d a 1/2. Either CSD requires

a value of W much smaller than 1/2 if the canceller is to produce

cancellation in the 10 to 40 dB range.

(b) The optimal canceller produces better results for the exponential

CSD for W larger than approximately 0.4. However, in the im-

portant region of small W, producing more than 10 dB of
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cancellation, the canceller is better able to reject the sin x/x

source. This is due to the Markov property of the exponential

source, as discussed above.

Summarizing, the exponential CSD produces significantly different re-

sults than the sin x/x case, as noted above. The differences between the two

reflect a Markov property inherent in the double exponential CSD. It is

likely that the differences also result from the fact that the sin x/x CSD is

produced by an angle limited source, while the exponential case results from

a source distributed on (-Yir). Like the sin x/x CSD, the source producing

the exponential CSD cannot be cancelled to an ambient noise floor for m=l.

Further, the minimum canceller output power is shown to increase with m,

just as the numerical results indicated for the sin x/x. However, the param-

etric behavior of the canceller with the two CDS's differs sufficiently that

the exponential case cannot be used to predict the canceller performance with

the sin x/x CSD.

2.7 Effects of Reverberation Non-stationarity on Canceller Behavior.

Section 2.1 considered two methods of applying the LMS adaptive canceller

to the non-stationary reverberation environment. Both methods held the

weights fixed for an interval of time after transmission in order to assure

that the canceller was not operating during periods of reverberation from

other sources. This is critical because the highly correlated inputs to the

canceller during these periods would severely degrade cancellation of the

CZ reverberation if the weights were not frozen. Once the initial time

interval has passed (and all other sources of reverberation died out), the

question arises as to the effects of ambient noise on canceller performance.
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The first method discussed in Section 2. 1 seeks to avoid canceller adaptation

in ambient noise completely. It does this by using an energy detector in the

reverberation band to determine when the CZ reverberation is present, and

only allowing the weights to adapt during this time. Given the fact that the

reverberation dominates the ambient noise (and signal, if present), this

detection should be very reliable.

However, it is well known that the LMS algorithm adapts much more

rapidly in an environment producing correlation between its inputs (such as

reverberation) than to one producing uncorrelated inputs (like ambient noise

does). That is, the filter "learns" the correlation properties of an input

much more quickly than it "forgets" those properties once the correlation

disappears. The second approach discussed in Section 2.1 takes advantage

of this by operating the adaptive canceller continuously after the initial

time interval has passed. Thus, the weights adapt during the period of

ambient noise alone, as well as when the CZ reverberation is present. Since

the filter "forgets" slowly, the degradation due to adaptation in the presence

of the ambient noise will be tolerable if the period of ambient noise is not too

long. This approach eliminates the need for (and cost of) the reverberation

detector.

The latter approach is considered in Appendix J. A pulsed model for

the adaptive canceller input is developed then used to derive an expression

for the mean weights and man square error (canceller output power) in such

an acoustic field in the absence of signal. It is shown that if the reference

hydrophone cross-spectral density matrix due to interference has a dominant

eigen value, Amax (as it will for a plane wave or narrow interference and
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high INR). then the transient response of the system is determined by

(P + \max Dc ), where Pn is the ambient noise power and where Dc is

the duty cycle of the reverberation, i.e.,

time CZ reverberation is present in one transmit cycle
c time canceller is adapting during one transmit cycle

Hence, the transient response is determined by the noise power plus the

time average of the eigenvalue over the adaptation time.

It is also shown that the pulsed character of the input produces an

increase in the steady state canceller output power above that which would

occur if adaptation only occurred in the presence of CZ reverberation. Note

that the canceller reaches a steady state, time varying solution in response

to the non-stationary input. For a single plane wave interference, this

maximum increase is shown to be

2

[i - (1-uP n)k-p (2-59)
Ymax - P k-p(

where P is the interference power, is is the total number of samples in the

period during which filter adapts in one transmit cycle, and p is the number

of samples within k that the reverberation is present. This has been shown

numerically to be a monotone increasing function of vi, so the increase in

canceller output power can be made arbitrarily small by decreasing 11.

However, it will generally be required that the canceller converge within

several pings, so that i will be selected to give the desired dynamic

response. In that case, (2-59) will provide an indication of the increase

in cancellation above that predicted in Section 2.5 and 2.6. Note that
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max is minimized by choosing p as close to k as possible, i.e., only adapting

in the presence of interference. It remains to develop an equivalent expres-

sion to (2-59) when the source is extended, and to use these results to

generate design guidelines for the implementation of the canceller structure.

2.8 Spatial Response of the LMS Canceller in the Presence of an

Extended Source. Although the main thrust of this study was the analysis

of the effectiveness of the canceller in rejecting an extended interference

without considering the effect of the canceller on some plane wave signal

of interest, it is clear that the detection of such a signal is the eventual

goal. Appendix H therefore considers the spatial response of the canceller,

that is, its response to a plane wave from some direction, , as a function

of that direction. This response is just the power that would appear at the

canceller output due to a plane wave signal at the angle S* In the case of

a uniformly distributed, spatially uncorrelated, plane wave source, this

spatial response, B~ (4Oy) is developed in terms of the DPSS's and their

eigenvalues and evaluated numerically on the computer. Figures 2-24

through 2-26 show the response of the canceller in the presence of such a

source centered at 450 relative to broadside and with an angular extend

of 200. The interference to noise ratio is 40 dB, and the hydrophones are

uniformly spaced 1/2 wavelength apart. The Figures show the results

using 1, 4, and 8 references, respectively. The spatial response can be

seen to include a notch in the direction of the interference, as one would

expect. From the Figures 2-24 through 2-26 and those given in Appendix H,

it can be seen that the notch broadens and deepens as references are added

until there are 3-4 references, at which point additional references only
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sharpen the sides of the notch and improve the spatial response to signals

in directions other than that of the interference. The results of Section 2. 5

indicate that for narrow sources, more use of more than 3-4 hydrophones

will not yield sufficient cancellation improvement to justify their cost. There-

fore, the results of Appendix H suggest that the reason for adding more

references may be to assure adequate signal response in some direction of

interest.

It was shown in Section 2.5 that as the distance between the reference

array and the primary increase, the cancellation of the interference

decreased. Figures 2-27 and 2-28 show the spatial response of the canceller

for the same source and an 8 element reference array as above, but with m = 10

and m =20 (recall that the reference hydrophone spacing is d and the distance

from the primary to the closest reference is md). It can be seen that the

notch depth has decreased, indicating a degradation in the cancellation,

and that there has been some degradation is the response pattern in direc-

tions other than that of the interference.

When interpretting these figures it should be kept in mind that the

primary consists of a single omnidirectional hydrophone, rather than an

array, as would be used in most sonar situations. As indicated in

Appendix L, when a primary array is used, the responses like those of

Figures 2-24 through 2-28 would be multiplied by the response pattern of

the primary array. This would greatly attenuate (by the primary array

sidelobe level) those regions outside the mainlobe of the primary array.

Assuming, then, that the reverberation that limits the active detection

performance arrives on or near the main lobe, the signal response in the
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vicinity of the notch is of primary interest. The reason for adding

references would then be to increase the slope of the sides of the notch.

With this in mind, it can be seen that in Figures 2-27 and 2-28,

increasing the distance between the references and primary did not signifi-

cantly degrade the spatial response in the vicinity of the notch. It can be

conjectured then that signal attenuation will not be a primary consideration

in selecting the distance between the primary and references when the

primary is a steered array and the interference is in the mainlobe.

As the interference-to-noise-ratio decreases, there is a reduction in

the depth of the null at the location of the interference. Figure 2-29 shows

the spatial response for the cases of Figure 2-26 (m=l, K=8, (=100) but the

interference-to-noise ratio has been reduced to 30 dB. Figure 2-30 repeats

the same case, but with an interference-to-noise ratio of 20 dB. It is

interesting to note that the array response in directions other than the

interference direction is affected very little by the change in interference-

to-noise ratio.

A major task of the next phase of this study is the investigation of the

effect of the canceller upon a plane wave signal, and the quantification of

the effectiveness of the canceller in improving the detectability of such a

signal. During the next phase, the above conjectures will be examined and

quantified.
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3. CONCLUSIONS AND RECOMMENDATIONS

This study has considered the LMS adaptive cancellation of CZ surface

reverberation using a bistatic approach, where passive hydrophones spatially

separated from the transmit/receive array are used as references. This was

done by modelling the surface reverberation as a narrow extended source that

is spatially uncorrelated and uniformly distributed. The work to date has

concentrated on the ability of the LMS structure to reject the reverberation

in the absence of a plane wave signal of interest. It was shown that by a

judicious choice of system parameters, such as hydrophone spacing and

number of references, the reverberation can be cancelled arbitarily close

to the ambient noise flow. Unlike the case of a point interference, however,

if care is not taken in the placement of references, little or no cancellation

may be possible regardless of the number of references. Through a combina-

tion of analytical and numerical techniques, the parametric sensitivities of

the cancellation performance to source extent, hydrophone spacing, distance

between references and primary array, and number of references has been

characterized. These results comprise the basic tools for the design of a

canceller for use in a given situation.

An important result was that for narrow extended sources, such as CZ

reverberation, there is a law of diminishing returns with respect to the number

of references to be employed. That is, beyond some number of references,

say K0 , more references do not provide sufficient additional cancellation to

justify the computational cost of including them. A design guideline for

selection of the number of references was derived. It appears that for the

cancellation of CZ surface reverberation in a sonar with a horizontal
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beamwidth of less than 200, at most 4-5 references are required. Of course,

these references only supply adequate cancellation if the other design guide-

lines are met.

Since this phase of the study considered the behavior of the canceller

in the absence of signal, the results presented here cannot be used to predict

the improvement in the detection of a plane wave signal in the presence of the

CZ reverberation. Some of the analysis of the response of the canceller to

the signal has been initiated in the work reported on the spatial response

of the canceller. In the next phase, this work will be continued, with the

goal of deriving a detection performance measure, such as deflection, for the

canceller structure. The effect of signal presence during adaptation (to

"signal bias" problem) will also be investigated.

The work in this phase of the study has been based upon several

theoretical models of the canceller structure and the C Z reberberation. During

the next phase, computer simulations will be run to validate both the analysis

and the mathametical models used. This will include development of a com-

puter model for the extended source for use with existing programs for the

multiple canceller structure. If suitable sea tapes can be obtained, actual

CZ reverbation will be compared statistically to the theoretical models used

here, and, if possible, run through the multiple cancelier algorithm.

77



77AD Glib 822 HUGHE S AIRCRAFT Co FULLERT ON CA GROUND S YSTEMS GROUP F/G 17/1
C ANCELLATION OF SURFACE REVERBERATION FRO M A 1BI1STATIC SONAR .IUA)2PLFITCFARENJBRHD N02-0C61

UASSIFIED HAC-FRA111-126 NL

211fllffllffllffllfEEEmhEEEmhhEEE



I
I
I
U
I
I
I

REFERENCES

I
I
I
I
I
I
I
I
I
I.
I
I



REFERENCES

[I] S.P. Applebaum, "Adaptive Arrays", Syracuse University Research

Corporation Technical Report SURC TR-66-001. August 1966 (Revised

March 1975)

(21 B. Widrow et al, "Adaptive Noise Cancelling: Principles and Applications",

Proc. I.E.E.E., Vol. 63, No. 12, Dec. 1973.

[3] B. Widrow, "Adaptive Filters" in Aspects of Network and System Theory,

R. Kalman and N. DeClarts Eds., New York: Rinehart and Winston,

1971.

[4] F.A. Reed and P.L. Feintuch, "A Comparison of LMS Adaptive Can-

cellers Implemented in the Frequency Domain and the Time Domain,"

I.E.E.E. Trans. on Circuits and Systems, Vol. CAS-28, No. 6,

pp. 610-615, June 1981.

[5] N.J. Bershad and P.L. Feintuch, "Analysis of the Frequency Domain

Adaptive Filter," Proc. I.E.E.E, Vol. 67, pp 1658-1659, December 1979.

[6] M. Dentino, J. McCool, and B. Widrow, "Adaptive Filtering in the Fre-

quency Domain," Proc. I.E.E.E., Vol. 66, pp 1658-1659 December 1978.

[7] B. Widrow, J. McCool, and M. Ball, "The Complex LMS Algorithm,"

Naval Undersea Center Tech. Report NUC TN 1437, October 1974.

[8] F.A. Reed, P.L. Feintuch, and N.J. Bershad, "Time Delay Estimation

Using the LMS Adaptive Filter - Static Behavior," I.E.E.E. Trans. on

Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No. 3,

pp 561-569, June 1981.

[9] P.L. Feintuch, N.J. Bershad, and F.A. Reed, "Time Delay Estimation

Using the LMS Adaptive Filter - Dynamic Behavior". I.E.E.E. Trans. on

Acoustics, Speech, and Signal Processing", Vol. ASSP-29, No. 3,

pp 571-576, June 1981.

78 I



[101 H.L. Van Trees, Detection, Estimation and Modulation Theory, Part III,

New York, John Wiley and Sons, 1971.

111 N.J. Bershad,P.L. Feintuch, F.A. Reed, and B. Fisher, "Tracking

Characteristics of the LMS Adaptive Line Enhancer - Response to a

Linear Chirp Signal in Noise," I.E.E.E. Trans. on Acoustics, Speech

and Signal Processing. Vol. ASSP-28,, No. 5, pp 504-516, October 1980.

[12] H. Widrow, "The Strong Szego Limit Theorem for Circular Arcs,"

Indiana University Math. Journal, Vol. 21, No. 3, 1971.

[13] D. Slepian, "Prolate Spheroidal Wave Functions, Fourier Analysis,

and Uncertainty - V: The Discrete Case," The Bell System Tech.

Journal, Vol. 57, No. 5, May-June 1978.

(141 J.B. Thomas. An Introduction to Statistical Communication Theory,

New York, John Wiley and Sons, 1969.

[15] U. Grenander and G. Szego, Toeplitz Forms and Their Applications,

Berkley and Los Angeles, University of California Press, 1958.

[16] J. Lamperti, Stochastic Processes, New York, Springer-Verlag, 1977.

E17] A.M. Yaglom, An Introduction to the Theory of Stationary Random

Functions," New York, Dover Publications, Inc., 1962.

[18] J.L. Doob, Stochastic Processes, New York, John Wiley and Sons, 1953.

[191 M. Abramowitz and I.A. Stegun, eds, Handbook of Mathamatical

Functions, National Bureau of Standards Publication, 1970.

79



I
I
I
I
I
I
I
I
I
I APPENDIX A: DERIVATION OF ThE FAR FIELD MODEL

I
I
I
1
I
I
1
I
1



APPENDIX A; DERIVATION OF THE FAR FIELD MODEL

Consider the array geometry shown in Figure A-1 located in a noise

field consisting of an ambient noise background and a strong extended inter-

ference source. The array consists of K+I acoustic hydrophones arranged

as a horizontal line array. Of the K+i hydrophones, K will be denoted

reference hydrophones, as shown, and used to cancel in the LMS sense, the

interference from the output of the primary hydrophone. The reference

hydrophones are uniformly spaced d feet apart, while the primary hydro-

phone is located md ft from the nearest reference. The reference hydrophone

outputs are denoted ek(t) for k = 0, 1, .... K-i, while the primary hydrophone

output is ed(t).

It will be assumed in the development of the noise field model that the

ambient noise produces zero mean, wide sense stationary noise at the output

of each hydrophone with nk(t) the ambient noise at the output of the k t h

reference (k = 0, 1, ... K-i) and n d(t) the output of the primary. It is

assumed that

E[nk(t)nI(t+T)] = Rn(T) 6 k1 k = 0, 1, ... K-1 (A-i)

I = 0, 1, .. .K-1

E[nd(t)nd(t+T)] = Rd(T) (A-2)

and

End(t)nk(t+T)l - 0 k = 0, 1, ... K-i (A-3)

A-i
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Figure A-1. Array Geometry for Far Field Model

where 5 k1 is the Kronecker delta and Rn (T) is the covariance function of

the Nd(t) and Rd(r) is the covariance function of nd(t). That is, the

ambient noise at the output of each hydrophone is uncorrelated with the

ambient noise at the output of any other hydrophone. This assumption will

be reasonable for realistic ambient noise fields if the hydrophone spacing is

not much less than one half wavelength at the lowest frequency of interest.

Let the extended source be distributed in angle, 0, as shown in

Figure A-i, and assume that the arrival from each angle is a plane wave

across the length of the array. Let the arrival from the angle ¢ at reference

hydrophone number zero, denoted i(t, ), be a zero-mean, wide sense

stationary random process with

A-2



E[i(t, € ) i (t+, 2 = RI(O 1,4 2 ,T) (A-4)

If the speed of sound in the water is given by c, then the propagation delay

from reference number zero to a point kd feet along the line array for the

arrival from angle is

dkO cCos (A-5)

Integrating over all c to account for the entire extended source gives the

hydrophone outputs as

Mi (t - k cos , 4r) d 4, k = 0,1, K-1 (A-6)ek(t) =nk(t) +t i( c

and

ed (t) nt) i (t - J d cos 4, 4,) d 4, (A-7)

where

J = K + m -1.

Assuming that the interference, i (t, ), is uncorrelated with the

ambient noise, that is,

Efi(t, )n k (t + )] =0 VT, 4

k = 0, 1, K-i (A-8)

and

E[i(t, )nd (t + T)] = 0 YT, 4 (A-9)

A -3
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h th
then the cross-covariance between the output of the pt and qh reference

hydrophones is given by

Re(P, q, T) = E M eq (t + T)

pR ) _ a+ R1  T d _I) (Peas - qcos0 2 j d1d2

(A-10)

Therefore, the cross-spectral density (CSD) between the outputs of the pth

thand q- hydrophones is

Se(p, q, w) =jFr e(p, q, T)]

O2  +ffT .,W d (A-i)
n (W)Spq Se( 2 ' ) + 2 (A-1)

where

i'[X(T)] J x(tr)e - j3 dt

(A-12)

oy2( ) =,-R n( T)]

and

IS (w' oil 0 ) --Jr[RI(T, $' 2(A-13)

is the spatial cross-covariance function of the source at frequency cu.

A -4



Similarly, it can be seen that

rI(p, T) z Efed(t)ep(t - T)] p = 0, 1. K-i

- / T R[T- (JcOS l - pcos 2 )ldid 2  (A-14)

S1( p , w) =,#[rl(p. T)]

fTfT .w)d - pcos1

= _ 0 I I' 2' w)e- [Jc2s 1  did2 (A-15)

Tr -Tr 1

and

r 11 (T) = E[ed(t) ed (t- T)]

7t IT
=Rd(I(T) + f RI(0I' ¢2' -)d~ld 02 (A -16)

S 11(w)=1

(A-17)

= f(W) +1 Sl 1 ' 02' w) e-J J cos¢1 - cos4 2]d¢Idp2

where

2ad(w0) =,[Rd( O] (A- 18)

Now, let e(t) be a random vector of the reference hydrophone

outputs,

e(t) -- e 1( t) ... eK-1(0) (A-19)
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The cross-spectral density (CSD) matrix of the reference hydrophone outputs

is

S e( ) =.IE[e(t)e+ (t)] (A-20)

= (se(P, q. p =, 1, ... k-1

Sq=0, 1 ... k-1

The CSD vector between the reference hydrophone outputs and the primary

hydrophone output is

Sl()= JTIE(ed(t)e(t)]

=S [S(0, W), s I  , . 1 S(K-1 , W)] T  (A-21)

The power spectral density of the primary hydrophone output is then S11(LO)

It will sometimes be convenient to explicitly represent the number of

references, K, in the notation for the reference hydrophone CSD matrix and

the CSD vector between references and primary. In these cases, Se(K, w)

will be the reference hydrophone CSD with K references.

Se(K. ) = Se(w) K references (A-22)

and s I(K, w) will be the CSD vector with K references

S1 (K, w) = Sl(w) k references (A- 23)
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A. 1 Narrow Source Approximation

When the extended source is the surface reverberation from the

convergence zone, the extent of the source will be much less than 2~- radians.

Suppose that the source is centered on an angle, %*O and is limited to the

sector ( ' 1 j. I] so

S 1 (~. ~' ~ ~ o - ' +(A-24)

S'2 [s~~o - 00 ~ +

Then (A-il) can be written

qe n pq

+f- 1s.+ O.0 24d (A-25)

If it is assumed that the source is narrow enough that

sinl c=(

and (A-26)

Cos (D=1

then

pcos %0+y 1-qcos(4,0 4+2 ) =(p-q) cosOO0 4)j -02sind,0  (A -27)
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Therefore

2
Se(P, q,) = n (,)pq

+ e JS((b + + * + 62" *_4)e C 0dold(2

(A-28)

It can be seen that under this assumption, there Is a two-dimensional Fourier

transform relationship between the hydrophone CSD and the source angular

distribution. Similarly

-- (J-p) c 0  _ ( i 2 (J 1 (b- 2 )sin 0 dd

S,(p,w = e cD _j j,0+,16 0 +612 W) e c 61d(02

(A-29)

and

2 +f--(- - - t,)sin 0
S W (+ I0 + "'' ¢0 + 'p2' L) e d dA-30)

Using the notation given in (A-20) and (A-21), these expressions yield the

following

S 2(U) 2 (w I + G+(W) So( ) G(w) (A-31)
e n eo

where

61€ +j w (P 1 -q(02)sin(0

(W) o 62 Iwe' 102'' dbId62 p = 0, 1, ... K-1

q = 0, 1, ... K

(A-32)
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and

g-j dpcos%)
G = diag e (A -33)

p

Also

.-d jcoso

& =- se- - 1 0  (A-34)

where the p element of .0 is

Jd (J6 -PO2 )sinb0

s 0 (P.J) -- S I (0+,l1 .0+,2' C 1 d db 2  (A-35)

A.2 Spatially Uncorrelated, Narrow Source

It will be shown in Appendix B that for reverberation from the

convergence zone, the extended source may be assumed to be spatially

uncorrelated, that is,

SI(-' 01' c'2) = Sl(' " ) 5 ((1-62) (A -36)

where 6() is the Dirac delta function. Under these assumptions, (A-28),

(A-29), and (A-30) reduce to

2--j----(-q)-co s J-p)-sin sdn

wd rj +j

Sl(p,-) = ec U S i(0+, )e c p)6sin60  (A-38)

and
2

S(w) = "d (1) + -S1(00 +-0, w) d (AA-39)
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For the spatially uncorrelated source, there is a simple Fourier transform

relationship between the source distribution function, S1f,6) and the CSD of

the hydrophones.

Of particular interest will be the case when the source is not only narrow and

spatially uncorrelated, but uniformly distributed on the sector (o0-§, 6 +,)

ST1(,,, ()=tT2,) O- , + ]

(A -40)
0, elsewhere

'Under these conditions, the integrals in (A-37), (A-38), and (A-39) can be

evaluated, giving

Se(P, q, O) -n2 (')6pq

+ sin (p-q) -d Tsin 0  J--(p-q)cos 0 A
+ ( q 1 d c " 1 e (A -4 1)

sin d(Jp)cs

s0 (p,.) TI 2 (j c e c (A-42)

and

S1 ( n 2(w) + 2 4 a2 (,) (A-43)

Therefore, in the notation of (A-33) and (A-35),

/ 
wd

w 12 sin (p-q) c t sin 0

eo( = ( pq A n'[ - " n p. 0 1 1 (A 44)
q= 0, 1, ... K-i
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APPENDIX B; APPLICATION OF THE FAR FIELD MODEL TO THE

SURFACE REVERBERATION FROM THE CONVERGENCE ZONE

B.1 Surface model with straight line propagation. Consider the geometry

shown in Figure B-i, in which the noise enamates from a sector of an annulus

on the ocean surface. The annulus is centered at the origin of the cylindrical

coordinate system, and has inside and outside radii R I and R o , respectively.

The sector is assumed to be of angular width 2e I centered about an angle eo .

A hydrophone is located D feet below the origin and a second hydrophone d

feet away along the negative y axis, as shown. This can be viewed as a

model of the convergence zone surface reverberation, except that the propa-

gation paths are direct rather than along the usual refracted paths associated

with the convergence zone. In the following results, it will be shown that the

propagation paths from the source to the array do not affect the hydrophone

CSD under the plane wave and narrow source assumptions if the source is

spatially uncorrelated. The assumption is that the reverberating surface is

uncorrelated from point to point is commonly made (see, for example, Van

Trees [10]). The hydrophone below the origin represents the transmit/receive

array of the active sonar, and the other hydrophone is the reference. The

reverberation is limited to the angular sector, e0 - 6 to e° + e , by the

horizontal directivity of the transmitter.

B-I
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Figure B-1. Geometry for Surface Model with Straight Line Propagation
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If the ambient noise is uncorrelated between the two hydrophones

spaced d feet apart, the CSD of their outputs can be written as

Sed 2() (d)

ofe° e ° SI (0 1., 2,a 1 ,' 2 , ' ) (B-1)

o - 1 0 1 I

+j 2[ro0(p ile ) - r  (p  , 20
.r.1( 2 'e2  cPP2dp2de2dp ld 8

1

where

qn 2(w) = power spectral density of ambient noise

si(PlP2,lIe 2,) = CSD of noise radiated at (p 1 ,0 1 ) and (p 2 ,6 2 )

r (p, e) = range from point at ( p, e) to hydrophone zero

r1(pe) = range from point at (p,e) to hydrophone one

c = speed of sound

This result is just a straightforward extension of the model developed in

Appendix A.
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It is assumed that the source is spatially uncorrelated, i.e.,

SI ( l, 2'092,W) = S I (pl, 1 ,2w) 0 ( 2 1 - e2) (B-2)

Then (B-i) reduces to

S e(d,w) = gn2( (d)

+f%+I f 0 Roj w(r 0(c., E)) - r1 CQ't0 2

ao- 1 (B- 3)

Now, as in Appendix A, assume that the wavefront from each point on the

annulus arrives at the hydrophones as a plane, and that the propagation

distance can be approximated as the sum of the range from the point to hydro-

phone zero and the plane wave propagation delay. That is,

r1(o,s) fr (,s) + d cos a (B-4)

where a is the angle the arrival direction makes with the axis of the two

hydrophones. It can easily be shown that

COSa pc Cos - 1 cos a (B-5)

I2 + + -
P

It is now assumed that p>>D, which is certainly true for the convergence

zone problem, so

cos cL $%Cos 0 (B-6)

B-4



and

0 +j d cos £

Se(d,w) = an 2 (w) 6(d) +f S I (p, e,,j)e C p 2dpde

0o-e1 1 (B-7)

or, making the change of variables e' = e-E 0

2 (1 R 0 +j.d Cos +e
S e(d, w) = a n 6 (d) +S(P,e,+e o w) e  c 02 2e+e)

R 1(B-8)

Note that r 0 (p, e), representing the long range propagation from the

reverberating surface to the array, is not present in (B-8). Therefore,

the use of straight line propagation paths instead of refracted convergence

zone paths should have minimum effect upon the results, except as they pro-

duce different vertical arrival angles.

It is now assumed that e1 is small enough that cos 01w 1, sin elf el,

so

cos (0-+ 0, ) =cos eOcos 0 - sin 6 0sin 0 0cos 0 - e sin 80 (B-9)

and

Se(dw)fan 2(w) 6 (d)

(B- 10)
j cos o  o -j wd sin e

e S (p,0,w)e 2

I d
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This has exactly the same form as equation (A-25) of Appendix A, which

gave the CSD for a uniformly distributed, uncorrelated source in the far

field model.

Next, it is assumed that the source CSD function, S1 (I,6,w), is separable

in p and e, that is

SI (P0,,) = Slr (p, w) Sla (, W) (B-I)

so that

Se(d,w) = an2(w) 6(d)

wjd Cos e0  Ro 1 _Pdj e sin Odj
+ e SIr(p, w)e c

(B-12)

Now, if the source CSD is assumed to be uniform in angle,

Sia(eW) = ai 2 (W) (B-13)

then

Se(dw) = an (w) 6 (d)

(B-14)
d .

sin [27T 1O -sin 0o  j L cos e°
+ a12(w) Gr(w) 0 e

i- sin 6B
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where

R

G r (w) =. 10Sir (p,W) p2dp (B-15)

I

If the pair of hydrophones on the x-axis is replaced by a line array of

uniform spacing, d, then the CSD between the outputs of the p th and q

hydrophones is

2
S e(pq,w) = 2 (W) 6 pq (B-16)

d •w

2 sin [ 2rO(p-q) - sin00 j -- (p-q)cos .o
+ a 1 (,) Gr(W) d e 0

'' sin e

where 6 pq is the Kronecker delta. Note that the plane wave assumption must

be valid over the entire length of the array.

This has exactly the same form as (A-41), so that the far field model can

be applied to this surface source under the above assumptions.

B. 2 Vertical arrival model. Consider the spherical coordinate system

shown in Figure B-2. As before the noise field is assumed to consist of

spatially uncorrelated hydrophone noise plus an extended source. Here, the

extended source is assumed to be distributed over a horizontal sector, ec-el

<e<0 + 0I and a vertical angle, Do -D<€ <Do + 4 ' and

S 1 (0 1 , 2 ,¢l,4 2,w) = CSD between arrivals from angles (6 1 , 1 ) and (0 2 ,q 2 )

r i(6, q) = propagation distance from source arriving at (M, ¢) to

hydrophone i (i = 0,1)

B-7I



angle of arrival

l -q

solid angle subtended
by reverberation arrivals

Figure B-2. Geometry for Vertical Arrival Model
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It is assumed that the source is spatially uncorrelated,

SI(6 1, 2 , W) = SI (e,4I,-) (9 1 -) 2 ) 0 (B-17)

so that the CSD of the two hydrophone outputs is

= 2
S e(d, w) = cn  1 (d)

(B-18)

s1°+0w oJro(E3 ,¢) - r1 , )]
+ S1(84'?,0) e si 2d~de

As in case B. 1 above, it is assumed that the wavefront from each point

on the source is planar, and that

rl(,4) 1 ro( ,0 ) + d cos x (B-19)

In this case, however,

cos a = cos e cos (B- 20)

so

s e(d,w) = an 2 (w) 6 (d)

%+" + j d ecosp
+ Si(0,,)e COsin 2 d~de (B-21)

-9o-el
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Note that the kernel, exp - - cos e cos ¢] depends upon both variables

of integration and is not separable. Because of this, reduction of (B-21)

to a line source requires that either cos 3 ; I or cos = 1. This means

that max [ 0 -e,o +e] or max [ o 0-,o+¢], respectively, be small, which is

a much stronger condition than in case B. 1, which only required that ¢ be

small.

It will be assumed that the vertical arrival angles, D [E -¢ 0+, are

close enough to the horizontal that cos ¢ % 1 and sin ¢ f ¢, which means that

the arrivals must be within approximately ±+10 of the horizontal. This is

consistent with the arrival angles associated with the convergence zone in

surface ship hull mounted sonars. Under this assumption

2

e(d,)~ an(w) S (d) (B-22)

+f ] -f cos (9+8

+10 S I (e o)e c d

(B-23)

Seeo +o,w) e c ed

Proceeding as in Case B. 1, assume that e is small, so

cos ( +eo) cos 8o - e sin e°  (B- 24)

B-10



and assume that S I C<,,) is separable,

S= SIh (.,)V (B-25)

so

Se(d ... 2 (d)

+ S IV(¢)2 d (B-26)

e1 Sih( e de ]
When the source CDS is assumed uniform in e, this gives

s e(df) fan 2 (w) (d) (B-27)

d ,j
2 sin [2- l -sin d j

+a- I_()_G___GO____ e I -cos ed 0

T X sin e

where

0o+
fiG ) = -  SI(0,w ) 2 d (B-28)
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This has exactly the same form as (A-41) and as the CSD of the far field

model with a uniform, uncorrelated source. As before, for a uniformly

spaced line array along the y axis with element spacing d. the CSD between

the outputs of the pth and qth hydrophones is

2Se(P, q ,  :2< p

(B-29)

d
+ ( 2 G() sin [2,(p-q)eO-sin 6 c (p-q) cos e

d e c o
-(p-q) sin e

0

B. 3 Summary. Two source models that can be used as approximate

representations of surface reverberation from the convergence zone have

been developed. Under very reasonable assumptions, it has been shown that

these models produce a hydrophone output CSD of the same form as an

uncorrelated source, which was considered in The assumptions

needed for use of the model are

(a) The wavefront emanating from each point on the reverberating

surface can be regarded as planar across the array.

(b) The reverberation is confined to an azimuth angular sector of

width 2 01, with e1 small enough that sin e 1 1 andcos el %I.

The transmitting sonar must therefore provide sufficient

directivity to justify this assumption if the model is to be

valid.

(c) The reverberation at each point on the surface is uncorrelated

with that at any other.

B -12



(d) The spectral density of the reverberation over the two

dimensions is separable.

(e) The spectral density of the reverberation is uniform in azimuth.

In addition, the vertical arrival angle model requires that

(f) The vertical arrival angles be concentrated in a narrow sector

about the horizontal, say ~< <D C, such that sin ) ft

Cos (D g 1.

Under these assumptions, the results for an uncorrelated line source

can be directly applied to the study of the cancellation of convergence zone

surface reverberation. These results also suggest that the line source

model can be used to approximate other two dimensional sources of narrow

angular extent.
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APPENDIX C; DERIVATION OF THE OPTIMAL CANCELLER
AND CANCELLER OUTPUT SPECTRUM

Consider the multiple reference canceller configuration shown in Figure

C-1, in which the output of K reference hydrophones, denoted e i (t) with

i = 0,1 ... K-1 are to be used to cancel an interference from the output of a

primary hydrophone, ed( t). In keeping with the discussion of Appendix A,

the hydrophones outputs are assumed to be zero mean random processes, that

are at least wide sense stationary. That is,

E[ep(t) eq(t+-r)] = r(p,q,T) P =  01 .... K-1
q = 0,1 .... K-1

where E[.] denotes expectation. The filters are linear and time invariant

with impulse responses hi(t) for i=0 .... K-1. The impulse responses are to be

chosen to minimize the mean square value of the error output, E[ 2(t)]. The

derivation here closely follows that of reference [143

From Figure C-i, it can be seen that

K-i

E(t) e ed(t 0- f0 h k() e k(t-T) dr (C-i1)

k=0

+

e d(t)

0r h0 ( + +

eo(t) ho(t) +

Figure C-i. Multiple Reference Canceller

C-I
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so that

K-i

E[EC2(t)] = r, 1 (0) -2 E f hk(T) rl(k, T) dT

k=O

(C-2)

K-1 K-i

+ hk (-0h (p)r(k k t-p)dTdQ
K 1=0 k 2=0

with re (p,q,T) the cross-correlation between e p(t) and e q(t), r1(p,T) the

cross-correlation between e p(t) and ed(t), and r11(T) the covariance of

ed(t).

Let the optimal impulse responses be denoted hk(t) for i = 0,1,...K-1,

and let

h Mt) ho(t) 6h (t)3k = k + 7k k(t) (C-3)

where 6hk(t) is an arbitrary variation about hk(t) and Y a real constant.

Substituting (C-3) in (C-2) gives the mean square error as

E _2(1=J+ 2 KI-1 6hk(-r) h 0 p) r (kT-p) d~dp
0 =0 Ykl =ak

K- K-1

- f 6hk 1(T) r e(kilk 2, T) dT - E E k1 k2

2 S6hkI(T) 5hk, (p) r e(klk)2- ) dTdp (C-4)

C-2



where

K-I

Jo =rll(0) - 2 kl2 fh 1 (0 r (k ,T dt

k1=0

K-i K-i

+ k f hol(t) ho(p) r (kl,k 2 ,T-o) dTdP (C-5)
kl=0 k 2=02

is just the minimum mean square error. All integrals have upper and lower

limits of - and -- , respectively.

If a minimum exists, it will occur when

hk(t) = ho(t), k = 0, 1, ... K-1 (C-6)kC-k

A necessary condition for this minimum to occur is that

a E[ 2(t)] = 0, k = 0, 1, ... K-1 (C-7)
3Y k

YO0

00
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Using (3-4),

K-1

=E[E2 Mt2] h (T) h0 (p) r (n,i,T-P) didp
yn

n i=O

Yo= 0

YK-1 = 0

-f6hn(r) r 1 (n,T) dTI (C-8)

For this to equal zero for arbitrary variation of 6h n(t),

K-1

r (n,T) = k0 hk(p) r (n,k,T-p) dp (C-9)1 Fa f k e

This must be satisfied for n = 0, 1, ... K-i. Recall from Section 2. 1 that

S 11( w ) =Jr[r 11(T)]I

s 1(p, w) = [r 1(p , TA

S e(p,q,w) =[r e(p,q, T)]

where.5[-] denotes the Fourier transform with respect to T, given by (A- 12).

Then taking the Fourier transform of (C-9) gives

K-1

o(n,(w) H k (W) Se(n,k, ) n 0, 1, ... , K-1 (C-10)

k=O

C-4



0
where H k() is the transfer function of the kth optimal filter. Now, as

in Appendix A, let

Sl( ) = [S (0,w) , s 1 ( ,W), , ... s 1 (K-l, ) T (C- 1)

and

S e(W) = (Se (p,q,w)) (C-12)
P=O,1 .... K-1

q=0,1,. .. K-l

Then (C-10) can be written as

SL(J) = S () H (W) (C-13)

where H0 (w) is a vector of the optimal transfer functions,

r ~ T
, () H() (w), HK(W) (C-14)

Therefore,

11 0 (W) = Se 1 (W) sl(W) (C-15)
e

Fourier transforming (C-3) to yield the spectrum of the irreducible

error, termed the irreducible canceller output spectrum here, gives

C-5
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K-1

Ek (W) = S1 1 (w) - 2 Hk (W) S (k,)

k=O

K- K-1
o *

+ E= =-Hk (w)k Hk2(w) se(klk 2 w)
k=O k2=0 1 2

= S11(w) - 2H*( s(w) + H* (-) Se (w) H* (W) (C-16)

Substituting the optimal response from (C-13) gives the canceller output

spectrum as

EK(W) = Sll(w) - +(W) Se (w) sl(W) (C-17)

Here, the subscript K in EK(M) indicates that K references have been used in

the canceller.

It will be useful to express EK( ) as the ratio of determinants,

det[SH(M)]
EK(w) = det[S e(w)] (C-18)

where SH(w) is a (K+1) x (K+1) matrix defined as

SH(W) S e ( W) s1(W)

+ 1 (w (C-19)

This is easily shown using the following matrix identity.
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Theorem: Determinant of a Bordered Matrix

Let the (N+1) x (N+I) square matrix, B, be defined as

B = + (C-20)

where A is an arbitrary N x N matrix x is a N-dimensional column vector,

y an N-dimensional row vector, and c a scalar. Then

det[B] = c(det(A]) -y+(adj[A]) x (C-21)

where det [ • and adj [ I are the matrix determinant and adjoint,

respectively.

Proof: Let

x

x -- = [Y l . . ]Y
Ln

j

Using the Laplace expansion formula with the elements of the N+1 column

of B as coefficients gives

N+l i+N+1
det[B] =i,N+1 (-l) ai,N+l (C-22)

i=1

with bi,N+ 1 the ith element of the (N+1) th column and 6 iN+l the minor of

bi,N+ 1 . Note that

C-7



b =c and

N+I,N+l 'N+1,N+I = (A) (C-23)

Further,

biN+l = X I <i < N (C-24)

Now, the minor of bi,N+1 for 1 < i < N is the determinant of the matrix

obtained by deleting the i-th row and the (N+1) t h column, denoted C. That

is,

a .... al, N

C a i-1 . . . ai-1,N (C-25)

a i+ ." V ai+l,N

aN,1 a N,N

Yl . . YN

where a.. is the i,j t h element of A. To obtain Bi, reapply the Laplace
iN+1'

expansion formula with the y, 's as coefficients

* (_)j+N+I ~ -6

ai,N+1 = det[Ci ] = 2yj(-)+ cj (C-26)

with ct i j , determinant of the matrix remaining when the Nt h row and jth column

of C i are deleted. Inspection of (C-25), however, shows that c ij is exactly

the minor of ai j in the matrix A.

C-8



Therefore,

det[B] c(det[A]) NXi )i + N + l  - j +N + 1
i=1 j=1

N N

c(det[A]) i CL i j X (C- 27)
i=1 j=1

The quantity (-1) i is the cofactor of a i j in the matrix A, denoted A.

Hence

det(B] = c(det[A]) - y A 11 AI2 AIN

S. X (C-28)

ANI AN2 • NN-

or

det[B] c(det[A]) - y (Adj[A]) X (C-29)

Using this theorem,

det(S H(W)j = S11(M det[Se(W)I - S1(w) Adj[Se(W) Sl(,) (C-30)

where Adj[A] in the adjoint matrix of A. Clearly then,

det(SH(W)] + -1
det(S e(w)] S 11 (w) - S(W) Se (W) s ( ) =EK (w) (C-31)

In the special notation of (A-22) and (A-23)

C-9



E (1)) S (J) s +(K. ~+) Se (K,w) s (K,( -2

KeS( 1 e]

-det[SeH (K,~.)

where

S H(K,w) SH (W Krfrne (C- 33)
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APPENDIX D: THE EQUIVALENCE OF EXTENDED SOURCE
CANCELLATION AND THE LINEAR PREDICTION OF A

BANDLIMITED TEMPORAL SEQUENCE

Consider K+I1 hydrophones oriented as shown in Figure D-1, and let

the output of the pth hydrophone be x (t), where the primary hydrophoneP

from which the interference is to be cancelled, takes the (J+1) t h position. Let

the cross-correlation function between the p th and qth hydrophone outputs

be given by

R pq(w) = E[n p(t) n q(t+-r)] (D-1)

and let the cross-spectral density between the pth and qth outputs be

S e(p,q,w) =, F[R pq Mt I (D-2)

where F[] denotes the Fourier transform with respect to the variable

Now, denote

S e(w) = (s e(p,q,L)) p = 0, 1.... K-1

q = 0, 1 ... K-1 (D-3)

s1 ( W) = [s 1 (0,t),sl(1,w), ... , sI(K-1,w)IT (D-4)

It is assumed that the process is spatially as well as temporally stationary,

so that

s e(p,p+A,W) = Se (q,q+A,w) (D-5)

D-1
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HYDROPHONES

Figure D-1: Hydrophone Geometry for Spatial Cancellation
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for any p and q. It is shown in Appendix C that the power spectral density

of the canceller output for K references is

EK(W) = S1I(W) - sI+(U) Se-1(,)Sl(W) (D-6)

Next, consider the temporal problem of predicting a stationary random

sequence, m steps ahead. Let a continuous random process, x(t), with

correlation function Rx (T) be sampled at a uniform rate of 1/T s samples per

second, so that the random sequence is x(nTs) n= 1012 . The
th th

correlation between the p and q samples will be Rx [(p-q)Ts]. Given

the finite past {x(-KT s ) ,... x(-T s ) 1, the goal is to predict in the minimum

mean square error sense the value of the mth element of the sequence,

x (mTs). It can easily be shown that the prediction error is

-1
E(m) =Rx(0) - rdx T Rxx rdx (D-7)

where

Rxx = (Rx [(p-q)Ts]), p = -K,-K+1,... -I

q = -K,-K+ ..... 1- (D-8)

= (Rx[(p-q)Ts]), p = 0,1,...K-1
x s

q = 0,1,... .K-1

and

rdx [R xm), R x(m+1), ... Rx (m+K)IT (D-9)

D-3



Comparing (D-6) and (D-7), it can be seen that the temporal linear

prediction problem is equivalent to the spatial LMS cancellation at a single

frequency. The temporal statistics, R xx, rdx, and Rx (o) correspond to

Se (W), s (), and S 1 1 (w) in the spatial case. It is convenient to note that

in the spatial case, using the notation of Appendix A,

s (p,w,) = Se (J-1,p,w) (D-10)

and

S 1 1 (w) = se(p,p,w), any p (D-11)

Therefore,

s 1 (w) = [se(J-1Ow), Se(J-1,1,w) .... Se (J-1,K-l,w)]T (D-12)

This makes the equivalence of R [(p-q)T and S (p,q,w) clear.x s e
The analogy can be extended one step further if the source is assumed

to be a narrow plane wave source in the same plane as the array, distributed

in angle c1, as shown in Figure D-2. Let the arrival from any angle, ¢1, be

uncorrelated with arrivals for any angle, ¢ 2' if 01 0 02' and let the source

be distributed in angle from 0 - D to 0 + P with angular density S I (90)

in that interval. The source is assumed to be narrow if

sin (D

cos 1 (D-10)
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Also assume that ambient noise with spectral density, an 2(w) appears at the

hydrophone outputs, and is uncorrelated from hydrophone to hydrophone.

Then, from Appendix A,

2
se(p,q,w)ft n (W) qe Pq

(D-i1)

Wd f .Dwd
+e - (p-q)cos 0 f S 1 (p4- 0 w)e j (p-q)osin 0 d

This discussion will be facilitated by demonstrating that the value of the

canceller output spectrum, Ek(,j), given by (D-6), is not affected by the
•ud

factor exp [-]- - (p-q) cos o in the second term of (D-11). Fromc0
equation (C-27)

det [SH(Kw)]
EK(w) =det [S (K w)] (D-12)

e

where

S e (K') s l(K,w)
S H(K ,w) = (D -13)

ls_+ (K,w0) S11(w0)

Given the hydrophone CSD of the form of (D-11), it is possible to write

+
SH (Mw) G +1 (K) S Mw, ) G I (K) (D -14)

Se (K, w) = G+ (K) Seo(K, w) G(K) (D-15)
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where

*jp wd cos

G(K) = diag [e (D- 16)
p=O, 1, K-i

G 1 (K) [G(K) 0 ]
0-j K - cos 0

with 0 a K-dimensional vector of zeros and

Seo (K,w) = (s (p,qw))p=0, 1 ... K (D-17)

q=0,1, ... K

with

S-j (pq) d-sin (d

(p w =2 +f a' (C (D-18)
eo(p,q, ) an ( pq (i

also

SHo (K,w) = r:(KL S (D- 19)

where

s o (K,w) = [seo (o,m,W), Seo (1, m,W), Seo (K-i, m,w)] T  (D-20)
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It can be seen that

K-i wd

K-1 + jp - -cos o
det [G(K)] = 11 e = (det [G+(K)]) * (D-21)

p=O

and

wd- jK - cos q +

det [G (K)] = e C 0 det [G(K)] = (det [G 1 (K)]) * (D-22)

Then using the fact that

det [ABC] = det [A] det [B] det [C]

(D-12), (D-14), (D-15), (D-17), and (D-18) give

det [SHo (K,w)]
EK(W) = det [Se (K,)] (D-23)

(eo (~)

Therefore, (D-11) can be replaced without loss of generality by

Se(p,q,w) - (W)5 pq

(D-24)

f (+-w)eC (p-q)p sin ¢0

so that the CSD, se(p,qw), is the Fourier transform of the source density,

SI(0+¢00).
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In the temporal case, when uncorrelated noise with variance a 2isn

added to each time sample,

00

2_f J2f(p-q)T
R [(p-q)Ts = n pq 2(f)e df, (D-25)

where S xx(f) is the power spectral density of the process x(t). If the

process is bandlimited,

tSxx(f+f0) f0 -B.-f-<f 0 +B

Sx1C~ f ) =I (D-26)

0 ,otherwise

Then (E-14) becomes

B J2nf(P-q)Tsdf-27

x s n pq + Sxx(f+f0 )e (D-27)

Comparing (D-24) and (D-27), it can be seen that the angular density of

the extended source is analogous to the spectral density in the temporal

case. Further the angular extent of the source, P, corresponds to the

bandwidth of the temporal process, B, and the temporal sample interval,

Ts , corresponds to the spatial sample interval

7r= -'sin 0 = X sin

with X the wavelength of the frequency, f.
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Now, the samples of the random process, x(t), comprise a random

sequence IxIwith

= x(nT S)(D-28)

Define

Rk= =E[x nx I~k (D-29)

and note that

R.k= Rx [kTs] (D - 30)

The power spectral density of the sampled sequence, I , may be defined

on [-r,tT) as

where the inverse transform relationship is

Rk f 7± f (a)e 1jk dct (D-32)
_ T

Note that (D-27) can be rewritten as

x s n 6pq +x + 2 7

D-9



If it is assumed that BT s_ 1/2, then direct comparison of (D-32) and (D-33)s

shows that

H x(0) = a n2

(0-34)

+-S + f Rect "'T xx 2rrs L 2TTB TI' To) s BT s :S

On the other hand, if BT > 1/2, the aliases of the sampled power spectral

density must be considered, and H x(a) must be replaced by HfX(a) in

(D- 32) where

o

Hfx (Xt) an 2 + E Hx(C+2lTk)

(D-35)

(c±+2 rk
2 0 Sxx 2T +f0 F0 +2rk TO

n 2T Rect j '
k=Ls

Now, consider the spatial cancellation problem starting with equation

(D-24). Define the elements of the hydrophone cross-spectral density

matrix as

Sk = . 'i£(en It len+k t)l (D-36)
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Analogous to the power spectral density of the temporal process is the wave

number-frequency spectrum (WNFS) of the hydrophone outputs, given by

H (aCW) S e jk a C[-r7,r,) (D-37)ek

with the inverse relationship

7T

S H (a,w) e-Jka da (D-38)

-Tr

However, (D-24) gives Sk as

r -jokw d sin o
S k = 02n (w) 6 (k) + S (W c 0 do (D-39)

Making the substitution

wda = ¢-sin ¢o

c 0
(D-40)

da = _ddsin ¢ d

and letting

1 Y sin o, sid

D-11
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gives

22 -Jka dT(

Sk  o ( ) 6(k) + S (w, + eo)  (D-41)k n I I 2Tr- o 2Try

Assume for the moment that (4t:-1/2. Then comparing (D-41) with

(D-36) shows that

He(CL, W) = 2 ( ) + Rect [i/27-ry ] (D-42)en ",

where

Fxc _ I 1, Ix I : X
Rect L~ -0, otherw-ise

Next, consider the case when Y D > 1/2, so that the noise field is under

sampled spatially, and the portion of the spectrum extending beyond [-Tr,rr)

will fold back into [-iTr). Let Hfe(,w) be the folded spectrum

H (c',W) = y2 (W) + He(a + 2 rk,w), a [-TT, ) (D-43)
fen E e

k:-oo

where H e(a,w) is defined by (D-42).

Then

2 '~'0 I (+2rk +00) Fa2kHfe (a, ) = an (W)+ 2 y 'ect , aET T

(D-44)
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D. 1. Results from linear prediction theory. The applicable results from

linear prediction theory fall into two general categories. In the special

case of m = 1, when the line array of references and the primary constitute

a uniformly spaced line array, results depend upon the Toeplitz properties

of the hydrophone cross-spectral density matrix. The second class of

results which apply to m _ 1 are from the more general theory of stationary

random functions. Most of the results to be presented concern the irre-

ducible prediction error, which, for the temporal prediction problem, is the

mean square error in predicting the desired number of steps ahead using

the infinite past. If E K(m) denotes the error in predicting m steps ahead

using K samples of the past, then

0 2

EK(m) =min E x(m) - E akX(k) (D-45)
aK-, aK-2,..., a1a o k=-K+l

where E(.) denotes expectation. Then the irreducible prediction error is

E (m) = lim EK (m) (D-46)
K - co

In the context of the cancellation of the extended source, the results

apply at a single frequency, so the notation must be changed to EK(mw)

and Eo(m,w). The parameter EK(mw) is the spectral density of the can-

celler output at the frequency w using K reference hydrophones and with

the primary md feet from the nearest reference. The Eo (m,w) is the limit

on the single frequency canceller output spectrum as the array becomes

infinitely long (K--). This clearly conflicts with the assumption of a plane
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wave source, which requires that wavefront curvature be negligible across

the extent of the array. The irreducible error, E.(m,. ), is therefore best

interpreted as a lower bound on the canceller output spectrum in the spatial

case. It should be noted that in numerical evaluations, given in Appendix K,

the lower bound was approached quite rapidly as K increased, so that K

may not have to be very large for EK(mu) to be near E ,(m,w).

A basic result from the theory of Toeplitz operators in the Szego

Theorem [15], which relates the irreducible prediction error, E(), to the

spectral density of the random sequence, Hx (W).

Theorem 1: Let a zero mean stationary random sequence, x(n) have

correlation function

Rk = Efx(n)x(n+k)] (D-47)

and power spectral density

.ka
Hx(a) Rke] (D-48)

k=-oo

Then

E (1) .lim E (1) = exp log H (a)d (D-49)

When log [H x(a)] is not inte grable on [-1T,r), the right hand side of (D-49)

is replaced by zero. The theorem as given here is somewhat more restrictive
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than given in [15] in that it assumes the existence of the spectral density,

H x(), rather than allowing for a spectral distribution that contains jumps

or that is not everywhere differentiable.

Note that under the last stipulation of the Theorem, any time log [Hx ('X]

is not integrable, the irreducible prediction error is zero, so the process

can be predicted perfectly from the infinite past. Such a process is termed

a singular stochastic process by Lamperti [ 16) or a deterministic stochastic

process by Azego [15]. The condition under which the process is singular

which will be of interest here is as follows.

Theorem 2: A stationary random process is singular, i.e., it can be

predicted perfectly in the mean square sense from its infinite past, if

J log Hx(a) da = (D-50)

This will occur if H (ci) is zero for any cis[-T,7). Then any random

sequence whose spectrum is zero in some region on (-7,-T) will be singular.
2

Note that if on 2 0 in (D-34), then the process is not singular, as would be

expected. In fact, the irreducible error will always be greater than 7n 2

2except in the trivial case of H x (c) = n

Theorem 3: Let the stationary random process x(n), have spectral density

of the form

2
Hx() = an + Hx 0(a), Hx0 (CO 0 (D-51)
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2

Then E (1) n . This can be seen by observing that

ex[ f nH O)dcj = exp L1n Zn [n 2 + H ( )

[Hxo a)]d2

= exp Lno2 + f (D-52 )

oe n 2 fT niT2ja~

(D-52)

since the argument of the integral is always positive if Hx0 () * 0.

In terms of the cancellation of an extended source, Theorems 1 through

3 apply to the power spectrum of the canceller output, E.o(1, w). As shown

above, the wave number-frequency spectrum, He (c,,w), is directly related

to the angular distribution of a narrow extended plane wave source. These

theorems therefore provide conditions on the source distribution under

which complete cancellation is possible in the noise free (on2 ) = 0) case

and indicate that cancellation to the noise floor is not possible in the

presence of ambient noise.

Theorem la: Let Y'be an extended, uncorrelated, plane wave source as

defined above, distributed in the same plane as the reference array and
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primary of the geometry of Figure D-1. In the case whem m = 1, the wave

number-frequency spectrum of the hydrophone outputs is

(c, { a 2 , k  S+ \ 20 ,w') [;o+ 2 7k] )(D-53

He(CL, W) = n 2(w) +E -Y 1 2 + Rect i[ (D-53)

k =-c

Under the condition that y¥ :5 1/2, this reduces to

H (t,w) = a 2(W) + 1 St ( + ¢ 0O.' Rect [2 (D-54)

2( 2) 1

Theorem 2a: Let an 2 = 0 and assume that yD S 1. Then the extended

source gives

E.(lw) = 0 (D-55)

Theorem 3a: Assume that an 2(M) : 0. Then by Theorem 3, the extended

source cannot be cancelled to the noise floor.

The results of Theorem 2 can easily be extended to m > 1 by observing

the following.

Theorem 4: Let E. (m,w) be the irreducible error in predicting, in the minimum

mean square sense, the stationary random sequence, x(n), m steps ahead.

If Eo(l) = 0, then

Eo(m) = 0 m = 1,2 ..... (D-56)
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This can be proven by noting that, under the stationarity assumptions,

x(2) can be predicted perfectly using the infinite past, x(O), '

if E = 0. Given x(-l), x(O) , it is possible to predict x(1)

perfectly. Hence, x(2) can be predicted using , x(-l), x(0)l with

zero mean square error, E (2) = 0. By induction, (D-56) is true.

This result means that in the noise free case, the canceller output

power for an extended source tends asymptotically (in K) to zero, regard-

less of m, that is, regardless of the distance between the primary hydro-

phone and the reference array.

In the case when E. (1) = 0, it is often possible to determine the

asymptotic behavior of EK(1) for large K using the Strong Szego Limit

Theorem for Circular Arcs [ 12] Applied specifically to the problem being

considered here, the Theorem is as follows:

Theorem 5: Let x(n) be a stationary random sequence with spectral

density H x(a) and correlation Rk9 k = ...- 1,0,1..... Let Hx (a) be

strictly positive on -A -5 a _5 A with A < Tr, and zero otherwise. Further

let dH x(a) /da satisfy a Lipschitz condition with exponent greater than 1/2

on -A 5 c : A. Then the minimum mean square error in predicting x(n)

given x(n-K), x(n-K+1), .... x(n-1) using a linear combination of the

observations is asymptotic in K to L(K), where

r ~ A~1 2K+1
L(K) = G Lain (2)] (D-57)
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and

G =ex f Tr log Hx L2 sin-' (sin !Icos 6) deJ (D-58)
LP27 -r 2

The theorem requires a modification of the version presented in [12]. The

modification is derived in the Supplement I to this Appendix.

Theorem 5 can be applied to the spatial cancellation problem by replacing

H x(C) with He (a,w) as given in Theorem la. Inspection of equation (D-42)

shows that, due to the aliasing of the angular distribution of the source when

y¢ > 1/2, the Theorem only applies when y(D < 1/2.

Theorem 5a: Let y(D < 1/2, and let

He (C ' ) = SI( + w) Rect (D-59)

where He (ct, w) is strictly positive on -A -5 a _5 A, and where aH e(XW )/a

satisfies a Lipschitz condition in a with exponent greater than 1/2 on that

interval. Then the irreducible canceller output spectrum, EK (1,ot), of an LMS

canceller using a line array of K references spaced d feet apart to cancel the

source from the output of a primary in the same line as the references and

d feet away satisfies

EK(l,w) % G(M) [sin Ty D 2K+1 (D-60)

where I- denotes asymptotic in K and where G(w) is given by

G(w) =exp log He( 2 sin-l(sin(7ry) cos 6), w1] dO (D-61)
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From this Theorem, it can be seen that the canceller output spectrum,

EK(lw), goes exponentially to zero in K when yP < 1/2 in the ambient noise

free case. Somewhat surprisingly, the rate does not depend upon the shape

of the source angular distribution, but only upon y . In evaluations of EK

(l,w) given in Appendix K for uniform angular source, (d-47) appears to

be a good approximation to EK(l,w), even for modest K.

Note that if ambient noise is present, so that

He(ct,,) = an
2

(D-62)

+ a S + 009 Rect[~] C, E[-7r, 7F]

Then the extent of He (a,w) is [-Tr,n]. This corresponds to A = Tr, which

violates the conditions of Theorem 5. (With noise present, (D-62) may also

violate the Lipschitz condition). However, Theorem 3a has already shown

that Ek(l,w) approaches a positive floor as K-o.

In the extended source cancellation problem, the noise free case is of

somewhat limited interest. It would be desirable to characterize Eo, (m, w)

for m > 1 in the noise present case, which would provide a lower bound on

cancellation as the reference array is moved farther from the primary. This

can be done using some results from the general theory of stationary random

processes which do not depend upon the Toeplitz properties of the covariance

matrix.
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In the noise present temporal case, it can be seen that

j log [Hx(a)]da > (D-63)

Tr

so that the process, x(n), is not singular. If the spectral distribution of

the process, say Hx (a), does not contain any jumps and is differentiable

everywhere, then x(n) is a regular random sequence, [ 171 and

H x(P) H Hx(a~da (D-64)

7T

A regular random sequence has a moving average representation

00

x(n) = c k (n-k) (D-65)

k=O

where &(n) is a sequence of uncorrelated random variables. It can readily

be shown that the minimum mean square error predictor of x(m) given

1xtn))n is [ 1 6 1

ns00

X(m) = ck E(m-k) (D-66)

K-m
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so that the prediction error is

rn-i

E (m) = F ICki 2  (D-67)

k=O

Therefore, if the c k's in (D-67) can be found, the irreducible prediction

error for m steps ahead is known.

The restriction of the process to the class of regular random processes

will not limit the usefulness of these results in the extended source problem.

As an aside, however, this restriction need not be made at all. As long as

the process is non-singular,

_ Zn H>-o()dc1 (D-68)

then it has a unique decomposition,

x(n) = u(n) + v(n) (D-69)

where u(n) is regular, v(n) is singular, and u is orthogonal to v. Since

v(n) is singular, it can be predicted perfectly given the infinite past, and

need not be considered in determination of the minimum prediction error

for x(n). As a regular process, u(n) has the moving average representation,

u(n) = dk E(n-k) (D-70)

k=0
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where (n) is an uncorrelated random sequence. The irreducible m step

ahead prediction error for u(n) (hence, for v(n), taking into account the

singularity of v(n)) is then

m-i

E. (m) = E IdkI 2  (D-71)

k=O

These results are rigorously derived in Lamperti [161 or Doob [ 181.

Even without finding the ck's of the moving average representation (D-65)

provides a useful result for the cancellation of a narrow extended source.

By (D-67), the minimum canceller output power in the noise present case,

Eo, (m, w), is a non-decreasing sequence in m. The cancellation floor there-

fore cannot become smaller as the reference array is moved away from the

primary.

The ck's in the moving average representation of a regular process can

be found using a factorization of the spectral density H x(a), given by the

following theorem from Doob( 18]

Theorem 6: Let x(n) be a stationary, zero mean regular random sequence

with spectral density, Hx (a). Then the coefficients of the moving average

representation are uniquely determined by the following

o exp 1-f log Hx (a) da (D-72)
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Er(m, n) = lir EK (m, ) (D-75)

K-),oo

Then

m-I

E. (m,W) = y I ck(w) 1 2 (D-76)

K=0

where the Ck (w) satisfy the equations

c 0 (w) exp log He (cw) d (D-77)

and

Cn (w) Zn xP[ + bn(W) Zn (D-78)

n=0 n=1

where

b1(W) log [H (c,w)] e -jnodc (D-79)

-11

specifically, from Supplement II,

c 1 (w) b1 (w) c 0 (w) (D-80)

c*(W) = [b 1 2(w) + b 2 (W)1 co(W) (D-81)
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II

b Zn

Zn = exp + bZn (D-73)

l n=1

w here

bn =- log[Hx(a)le -Jnad, (D-74)

7T

By expanding the right hand side of (D-73) in a power series, or by differ-

entiating (D-73) and letting z-0, it is possible to obtain explicit expressions

for the Ck'S, and hence, for

m-1 2

E(m) = Ic I

k=0

However, the expressions resulting from this procedure are quite complicated.

Supplement II to this Appendix derives expressions for c 0 c l ,c 2 ,c 3 ,c 4 ,

and c 5 as a function of the bk's defined by (D-74), which allows evaluation

of E.,(n) for m = 1 through m = 5.

As before, the temporal linear prediction results given here can be

applied to spatial LMS cancellation by replacing H x (a) by He (a,() given

in Theorem la. This yeilds the following result;

Theorem 7: Let EK (m,w) be the output spectrum of an LMS spatial canceller

as defined above, and let He (c,w) be defined as in Theorem la. Denote
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C3 (w) = + 3b (w) b2 (w) + b 3 (w) c 0 (w) D-82)

C*(W) = 4 + 6b 2 (w) b2 (w) + 4b (w) b 3 (w) (D-83)

+ 3b 2 2(L) + b c4(w) co(W)

c * ("j) [b 5 (W) + 10b 1
3 (w) + 10bl 2 (w) b3 (W)c5(1 1 1 3

+15b 1 (w) b 2 2(w) + 10b 2 (w) b 5(w) + 5b 1 (w) b 4 (w) (D-84)

+b5(w)I co(W)

Supplement I: Strong Szego Limit For Circular Arcs. The Strong Szero

Limit Theorem for Circular Arcs is given in L 12] as follows;

Theorem 8: Let f be a function satifying f ( 0) = f (27T - e) which is

supported on a closed arc a < e <2Tr - a and which when restricted to that

arc is positive and satisfies a Lipschitz condition with an exponent greater

than 1/2. Let Dk[f] be the Toeplitz determinant

DK~fl = det e j(p-q) e f(6 ) d 1 K- (D-85)

q=0,1,...K-1

Then as K-oo, one has the asymptotic formula

1 1 K 2

DK (f] 2 1/12 e 3g' (-1) (sin ~)~ E[F]2K 4 G(F] K( )os ) (D-86)
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where if

log f( 6) = f k ejke (D-87)

one defines

F[f] =exp(f 0 ) (D-88)

00

G[f] = exp 1 E k (D-89)

k=1

and

F(e) = f (2 cos -1 o cos ) (D-90)

Here, '(x) is the derivative of the Riemann zeta function. [19] The

proof of this Theorem is given in [12].

Theorem 5 requires the limit of the Toeplitz determinant when the

function f satisfies all the conditions of Theeorem 8, but is supported on

the closed arc - < e < S. In this case, a Corollary to the Theorem may be

stated as follows;

Corollary 1; Let f be a function satisfying all conditions of Theorem 8,

except that its region of support is the closed arc -< < e < 6. Then the

Toeplitz determinant,
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Dn [f] det (1 f i(p-q), f( 3)de) (D-91)
7 ~p=O,l1 .. K-1

q0O, 1... .K-1

has the asymptotic formula as K--

Dk~f ~ 21/12 e351 (-1) (o ])14~K (
where G and E are as defined in Theo8emD- 92)

F[9] = f (2 sin -(sin - cos e) (D- 93)

Proof: Consic -r

e ' ene f(e)de (D-91)
-T

where f has support on B, With the substitution e 7T, -

1 Tr e jn f(9)de 1 f2rej(- fcO-TOOd (D- 92)
-ITT 0

- 1 )f ~2 Tf e jn g(t)d

0
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with g() -1 Note that g has support on fT - 6, 7r + B] , and letting

i = - 3 g has support on [aL, 2'7 - al. Thus if f meets all the other

requirements of Theorem 1 on [-S,, then g satisfies the conditions of

Theorem 1.

In order to relate

det (1) p-q 1 2r (p)l' g(O)d~) .K1(D-93)

q=O, 1, .K-1

to

det ~27r (P1 Odo
7T f e (-) ()d) p=O, 1, ... K-1

0q=, 1,... .K-1

the following theorem may be used.

Theorem 9: Let two square matrices, A and B be defined by

A =(acp~q)) p=O,1....K-1

q=0, 1, .. K-1

and

B =(( 1) pq a(p-q))PO .. -
p=O, 1, ... R-1

Then det (A) = det (B)
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Proof: Let M be a diagonal matrix

M = diag ((-1) p ) (D-94)

p=Ol... 1 K-

and note that

M- = diag ((-1)p) =M (D-95)
p=0, I .... K-1

Now, the matrix B can be written in terms of A as

B = MAM- I  MAM 
(D-96)

Therefore

det(B] = det(MAM] det2[ M ] det [A] (D-97)

det[A]

Using this theorem,

det( 1 f eJ(p-q)(det F- p=2,1 .... K-1

JTq=0,1 .... K - 1

=det I f _)P-qo e j ( p - q ) q)g( )d p01.. - (D- 98)

o pq0,1,...K1

q=0,1 .... K-1

df27t e j( p - q )  ()¢

det F e go)df p=O,1 .... K-1

q=0,1 .... K-1
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where g( ) --f(4 -- ) is supported for ¢E [Ct, 27T - al with a = 7 - B. Further,

g meets all the requirements of Theorem 8, so that limit of the Toeplitz

determinant, (D-91), can be found. The result is that

1 1 1 K2

DK[f] 2 1 e 3t '(-1)(sin - E[F] 2 K 4 G[F]K Cos (D-99)

4 1 K 2

2 3 t '(-1) (os ) E[F 2 K  GF K (sin

where if

log g(O) =J gk e jk , (D-100)

k=o

define

Gig] =exp [go]. (D-101)

and

E[g] = exp kgkg- (D-102)

k=l

Further

FM =g (2cos 1 o . Cos (D-103)

1~ =g (2cos1(in Cosq)

D -31



but

g(0) = f (- )

so

( 2 cos -1 (sin -Cos ~~) =f (7r - 2 cos -l(in ~Cos (D))4
SOS

Let the argument of f in (A-23) be x, so

x = T- 2 cos -1(sini ~Cos )
or

cos - sin cos (D-105)2 2

so that

x = 2sin 1(sin cosq) (D-106)

and

F(O) = g ( 2 sin s(n cos ) (D-107)

This Theorem allows the determination of the asymptote of the ratio of

Toeplitz determinants as follows:

Corollary 2: Let f be a function satisfying the conditions of Corollary 1,

and let DK[f] be the Toeplitz determinant

D-32
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1I

Df]e j ( p - q ) f() d (D-108)DK~f] =d tp=0,1I .... K -
q=01,.K-i

Then as K-o, the ratio DK+ If] /DK f] has the asymptotic formula

D K+ f] nu G[F] ni snf-2 D19

with G and F as defined in Corollary 1.

Proof: By Collary 1,

11 1 K 2+2K+1

DK+I[f] 22 e 3 t'(-1) -C E[F] (K+l)4G[F (sin

DK[f] ()K'

-1/4 G[F] sin 2K+1 (D-110)

2K
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Supplement II: Evaluation of Irreducible Prediction Error for Specific

Values of m

From equation (D-78),

cn Z= exp - b n Z D-Ill)
n2 n

Let

C(Z) = n (D-112)

n=O

B(Z) - + bnZn (D-113)
n=l

Now, denote

C (m)(Z) - dm C(Z) I B(m)( Z) dmrB(Z) (D-114)
dZm  ' dZ m

and note that for m > 0,

C (m)O) M m! c B (m)(0) = m!bm (D-115)

D-34



Using (D-111), and dropping the arguments, Z, for convenience

C ( l ) =exp[B] BM1  (D-116)

(2) (1)2 (2) 1

C expB + B (D-117)

i' ( 2
C (3)exp[B] B'' B(1) +B (2)

+ exp[B] 2B ( 1 ) B ( 2 ) + B ( 3 )

= exp[B] tB(1) + 3B( 1 ) B(2) +B (D-!18)

4)= exp B] B ( ) 1() + 3B ( 1 )  B ( 2 )  + B ( 3 )

+ exp[B] j3B( 1 ) 2 B ( 2 ) + 3B ( 2 ) 2 + 3B ( I ) B ( 3 ) + B(4)1

exp[] { ( 1 ) 4 + 6(1 ) 2

= exp[B] B + 6B' B (2) + 4B ( 1 ) B ( 3 )  (D-119)

+ 3B (2) + B(4) 1

C(5) =exp[B] B( 1 ) 5 + 0B (1) 4 B (2) + 1OB ( I 2 B ( 3 )  (D-120)

+15B(1) B(2) 2 + 10B(2) B(3) + 5B(1) B(4) + B ( 5 )

Therefore, setting Z = 0 and using (B-5) and (B-6),

m

Cm E - Cm-k bk (D-121)

*D-35



where, from (D-117)

co = exp (b0/2) (D-122)

Some specific c Ms are then

c =c 0 b 1 = b exp (b 0 /2) (D- 123)

c 2 =c 1 b 1 + c0 b 2

(D-124)

- (0 bl + 1 g 2  - [b + b 2 ] exp [b 0 /2]

S3  c c2 bI + 2c 1 b 2 + c 0 b 3

(D-125)

[2 * * *

- [b1  b 2 ] b 1 c0 + 2 b l b2 e 0 + c 0 b 3

3

[b 1 + 31 b2 + b 3] exp (b 0 /2)

* * * * *
c 4 =c 3 b 1 + 3c2 b 2 + 3c 1 b 3 + 0 b 4

= [b1
3 + 3b b 2 + b3] b C 0 + 3b 2 [b1

2 +b 2 ] C02

(D-126)

+ 3 b I b 3 C0 +C 0 b 4

= [b1
4 + 6b12 b 2 + 4bI b 3 + 3b22 + b 4] exp [b 0 /2]

D-36
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I

05 = c 4 b 1 + 4c 3 b 2 + 6 c 2 b 3 + 4cI b 4 + c 0 b 5

[b4 6b 2 3b22 *
Sb + b1  2 + 4blb 3 + +b 4] C 0

+ 4b 2 [b 1
3 + 3b 1 b 2 + b 2 ] c O + 6b 3 [b2 + b 2 ] C*O

+ 4b 4 b 1 0 + b 5 0

= [b 1
5 + 10b 3 b2 + 10b 12 b 3 + 15b 1 b 22 + 10b 2 b 3 + 5b 1 b 4

+ b5 1 exp [b 0 /2] (D-127)

From (D-76)

in-

E. (m, w) = Ic 1  (D- 128)

k=O

D-37
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APPENDIX E; CANCELLER PERFORMANCE IN TERMS OF
DISCRETE PROLATE SPHEROIDAL SEQUENCES

The power spectral density of the optimal canceller output, from

equation (G-17) of Appendix C is given by

EK( ,) S $1(w) - si+(W)S4-1(W)8 1 (W) (E-i)

with

S 1 1 (w) -PSD of the primary

Se (w) = CSD matrix of the reference hydrophone outputs

--1 (w) = CSD vector between the primary and reference hydrophone

outputs

For the far field extended source described in Appendix A, assuming

a uniformly distributed, narrow, spatially uncorrelated source, the statistics

of the hydrophone outputs are

SI(w) = 20Da2(W) + a 2 (E-2)
11 n

2 _jd j cos 0oAl- = 12I(W) e -G 0s (E-3)

where (E-4)

s 0 = [s 0 (°,W), so (i,,) .... s 0(K-1,()]T

s (pW) sin 1( J-p) L- d-¢ sin (E-5So(P in =(E-5)

0J C-p) !- sin d~a

E-1



and

Se =n2()I + aj 
2 (w)G + S eo()G (E-6)

where

Seo(W) 1 c0, (E-7)tsi [(P-q)wLdsin _

q = 0, 1.... K-1

and

G = diag [e c (E-8)

The inverse, S eo(w), can be obtained in terms of the eigenvalues andTheo

eigenvectors of S eo ), which can be defined in terms of the Discrete

Prolate Spheriodal Sequences (DPSS) as discussed in Slepian 13].

Note that (E-7) can be written

S (w) !(sin [2TrW(p-q)]

eo( )  -r (p-q) p =0,1,...,K-1 (E-9)

q = 0,1,...,K-1

with

=d.
y = sin °

W y

A= wavelength at frequency w

E -2
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Now, the DPSS satisfy

K-1

sin[2 r(n-m)W] v(k) (K, W) = k (KW)v(k) (K, W) (E-10)
T (n-m) m k n

m=0

for k=,1 .... K-1, where nk) (K,W) n,1,2 is the kthDPsS and

where Xk(KW) is the associated eigenvalue. Equation (E-10) for k=0,1, ... K-1

can be written in vector form as

+(k
s V (K,W) = X (K,W) V( k ) (K,W) (E-11)-n kn

where

T
s [sn(O), sn(1) ... sn(k-l) ]  (E-12)

s (q) =sin I2'rr (n-q)W]
n = Tr(n-q) (E-13)

and

V (K,W) [ [(k) (K,W), .... V k)(K,W) (E-14)

E-3
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Therefore

+  (k)

+ V .k(KW) =k(KW) v k)(K,W) k=0,1, ... K-1 (E-15)

V (k) (K,W)

-k-

++
Comparing (E-15) with (E-7), it can be seen that

1 +

Sea ( SlC) if W = 'r (E-16)

with y = fd/c sin 0 and w = 27Tr f. Therefore, multiplying both sides of (E-15)

by 1/y gives

SeoVk K,Y =,( ( ' ' K,yD) (E-17)

In this form, it can clearly be seen that the set of eigenvectorsIV (K,IW)

k=0,1, ... , K-i, of Seo(w) are the Yk(K,W) given by (E-14) with
1

associated eigenvalues [- \ (K,W)]. Noting that G is diagonal and that
Y k

-1 +
G = G+ , it can be seen that

E-4
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[G+S GI G + Vk(K.W) = \(K,W) G' Vk (KW) (E- 18)
-o k

so that the G + Seo G has the same eigenvalues as S eo, but its eigenvectors

are IG+Yk (KW)I, k=0,1, ... K-1" Consequently, Se has the same eigen-

vectors, but its eigenvalues, r (K,W) K arekR I k=0,1, ..-

2

(K,W) = r 2 + 2 I (K,W) (E-19)
k n Y k

Therefore,

K-i

- -k- (K,W) G+ V (KW)V (K,W)G (E-20)

k-o

and

K-i 2

S+Sl = rk1k(KW) G Yk (K,W)I (E-21)

k-O

Using (E-3) gives

+c+= 2 + +j d 0j + +_- cs

Gs Vk (K,W) = 0 o GGV e o 2 V ( K- ,W)e+J Jcos-§o Yo

(E-22)

but

K-1
S k_ (K,W) = sin[27r (J-m)yD] v(k)(K,W)

m=0 -E [(J-m)2Try] m

E-5
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K-I
1 - sin[2 7(J-m)W] v(k)(K,W) W)V(k)(KW) (E=~KW (-)m= k(K,) ( ,) E-23)

M=O~ T Jm Xk J
m=0

by applying (E-10) again. Substituting this in (E-21) yields

K- -1 I X oX(KW) 72-1~ .. .. v(k)

--lSe k ' a n2 +  I 2x (K,W)

k

Therefore K- 222
2~ 2+2 D a I X LkW k(K,W) ] (k)~ 2?(-4

nl I Y E w + 2ta (K, W)I j( k=O nk

For the moment, suppose that the noise field is totally due to the extended

2
source, 0n = 0, s0

E = oA2 2 - W I((K,W) (E-25)

k=O

A good check on this result is to let J=J 0 for some 0,.< J < K - 1, so0 o

that one reference is coincident with the primary hydrophone. This should

give perfect cancellation. In that case

IK-1
Xk(K, W) V(k) (KW)V( k ) (K, W)

k=0

E -6
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K -t K sin[2 (J° -0 )W ] V( k) (K ,W )V(k) (K, W )
=.. L T(Jo-Z 2.)

k=O £=O 0

K-i sin[2r(J - Z)W] K-i

sin[2(J°-) V~k) (K,W)V(k) (KW) (E-26)

Z=j 0 k=O 0

But the DPSS are orthogonal when index limited to [O,K-1]

K-1

V~ k ) (KW)V (K, W)= 6 (E-27)
k=0 0

SO

so

K-1
(k) (k)_ _ yL 1  X k(KW)Vj (K,W)Vj (KW) = 2W- (E-28)

k=O 0 0

Substituting this in (E-26) gives E = 0 indicating perfect cancellation of the

source as it should when a reference is coincident with the primary.

E-7
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APPENDIX F: RESULTS FOR THE UNIFORMLY DISTRIBUTED FAR FIELD

MODEL BASED UPON TOEPLITZ PROPERTIES OF THE HYDROPHONE CSD

When the extended source is narrow in the sense of (A-24) and spatially

uncorrelated, substitution of (D-53) into (D-49) yields the irreducible canceller

output spectrum, E,(i,w) as

E (,) = exp[- f T in [Hfe(a,w) dw

2 x fe x pTr In C i2M + l / , 2Tj0 cE 2 -rrk ]

k=oo

n2)exp 1 Tr n 1 + 1SI --l~ + 00)

"n2 (mT f 2 2 7
7 (w k=- ,

Rect a+2T]] da

2 _ /2y a 2 100 (w) exp Yj in I+1(\-S (+ +oj

n k=- o

Rect [o + k/y] do (F-i1)

When y¢ < , using (D-54), this reduces to

E.(I,w) 2 (w) exp Y f n 1 Si(W. 0 + i0) do

Yan(w)

(F- 2)

F-i

Iil ' .. . . . I I I .. . .. . . . .I II I I I I II . ... . . I II I I I m I,



In the case when extended source is uniformly distributed on [ (o- (P

+(P, as in (A-40), then (F-l) and (F-2) can be evaluated in closed form.0

Since the uniform source distribution is a reasonable representation for a

number of sonar problems, this result is quite important. Let

cI (t) [> - > 4>+ 4>]

S (0 ,W) = 'w) t IiP - D' o

0 ,otherwise

and define an integer, n, such that

n n+1
Y(P < (F- 3)

2 2

The positive alias in Hf (ct,w) as defined by (F-i) centered at k/y extends
e

from (k/y) - D to (k/y) + 0, so if

k - (F-4)
'Y2-

the kth positive alias extends through the interval of integration,

thI2-2-If (F-4) is met, the k negative alias also extends through the interval of

integration. Let k be the number of aliases extending completely through

-1, . Using the above, k° = Ly - 1/2] where [xJ is the largest integer
2y 2y th, 

Dt k+1 $< X. The next, (k0 + 1) t , alias extends from (ko+l)/y - 4 to (k + 1)/ +

First, consider n (in (F-3)) even, so that

k° = [y¢ j =n =- 1 (F- 5)

Therefore

F-2



(k0  +1) - n ( < o (F-6)

y 2y-

since, by (3-98)

n
Y 2

thn 1Hence, the (k o + I) positive alias extends from - - to while the
-1 t

negative alias extends from 2Y TY + (, overlapping as shown in Figure

F- 1.

Hf(LJ)

effect of (k +i).L I I

a iases 1-4 sum of original
I" I - 4- spectrum plus 2ko7 aliases

II I

-1/2' -4P+n/2Y 0 4'-n/2Y 1/2Y

Figure F-1. Folded Spectral Density for Uniform Source, n even

Using this, there are 2k 0 aliases (k o0 positive plus k0 negative) extending

through [-1/2-y, 1/2y] plus the prunary spectrum and the sum of the (k0+l)th

aliases. Hence, in (F-i)

F-3



a2 (w, + co) Rect +

k=-_oo (F- 7)

2 (w) (2k + 2) + Rect -

= 2 (W ) n + Rect n
2 2y

Substituting this in (F-1) gives

xp ~ If ) n + Rect~IjdI
= a2(wo) ep mu i + I(o~

f2T

1 2y 2

an(W) exp yn i[ 1 + in + nd+n

f 2(l a 2()y
n- L_ 

nn2

1d

fay (w) 
2 J 2

(W) . -x In 1 + d -yIn--+n

xjnJmn i 2 ,
2y 1 2

-i-yn~w)Y f+ n al Mwl

F-4



2y--n

2 2

n an (w) + + 2 2Y an (w) y + no', (Wd)

a2 (W) n (y) 2yD-n

n + ,i+__+
a(W) 0, (W)

(F- 8)

Now define W = y( and note from (A-41) that the power from the extended

2source is 24O (w).

Then

2P a 2 (W) 1 2yD-n

Eo(Iw) z 2W Si + (F-9)

where

2W a2 (W)
S = n + 2 n (F-10)

2(D a2 Mw
2 I

[ F-5



This result is identical to that obtained by Slepian for the teirporal linear

prediction of a perfectly bandlimited random process in uncorrelated noise.

However, Slepian considered the problem in terms of the Discrete Prolate

Spheroidal Sequences (DPSS). The DPSS and their eigenvalues are associated

with the hydrophone CSD matrix produced by the uniform source. This results

depended upon the asymptotic evaluation of several complex integrals and did not

demonstrate the effect of aliasing of the wave number-frequency spectrum,

H e(&,w), on the linear prediction error.

If n is odd then

ko[ - = n-1 (F-iI)

and the (k0 + 1)th positive alias extends from (ko0+l)/Y -Y to (k0+l)/Y +4),

where

(k0 +l)- - n+l (F-12)
*Y2Y

since y _n+l. Then the (k0 + 1)th aliases do not overlap, as shown in
2

Figure 3-2. Therefore, by the same argumei' used the even case,

Hf(.J)

effect of () sum of original

(k + 1)talias spectrum plus 2koaliases

1 1 b(&

n+1 n+1
-1/2Y V -4- 0 4- - 1/2y

Figure F-2. Folded-Spectral Density for Uniform Source; n odd

F-6



F. 1 Interference Only Case

As mentioned above, the case where the noise field consists of only a nar-

row extended source with no ambient background does not occur in sonar.

However, consideration of the ambient noise free, 2n(w) = 0, case yields

insight into the behavior of the LMS optimal canceller in the field produced

by an extended source. Consider the irreducible canceller output spectrum,

Eo(1,w) when

an(W) = 0

It is easily shown that (F-9) reduces to

2 2W-n
E°(Iw) - 2W n 1+ n (F-16)

a(W) = 0

with n defined as the integer such that

n n+1- < Y (D < - (F- 17)

1

Therefore, if -Y < 1, so that n=0,

Eo,(1,w) - 0, D < (F-18)
2 2

a(W) = 3

and the extended source can be cancelled completely, at least asymptotically

in K, the number of references. On the other hand, if y( -> 1/2, Ek(1,w)

approaches some positive value as K becomes large. The significance of this

F-7



COi -n + Rect

S2() (2k +1) Rect -,, +(4,- : L

"a ' F -3
2 

R= 

-coa
(W (i2  +1) + Rect n + Rect I( n

aT in4 n+Rect F+ Rec 1 (,_ d L.+a (F-13)

where
3 n+1

T 3 (F -14)

a 2Y

Integrating this as in F-8 gives

_____+n° j 2(w)+1 1+ 2+

Tr[ 2(w)

2 n,,

whc te sae as (F-). 2hrfr, n od I+t -aereut

y' '

n i T f______2____F-

[a '+1 .+ 22)2 1 [ 2- 2
T + ,2(") a n y 2YnaIn I - (+ y / an -0

Cr 2 2Y (Fn

-8
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fact can be appreciated by observing Figure F-3, which shows E,,(I,W) as a

function of -y for y, 1 1/2. Clearly, when y > 1/2 the cancellation of the

extended source is extremely limited. The condition -y < 1/2 is therefore a

spatial Nyquist condition, with

d .y = - sin o
A 0

the spatial sample interval, and P, the source extent, analogous to bandwidth

in the temporal case. This result should be no surprise given the equiva-

lence of the temporal linear prediction problem and the spatial cancellation

problem developed in Appendix D.

age

096

ER(,W )

0.94 _____________________________
0.5 10 5 0 25

Figure F-3. Irreducible Canceller Output Power
vs. W for Uniform Extended Source
in Noise Free Case

Using the Strong Szego Limit Theorem for Circular Arcs [12], as discussed

in Appendix D, it is possible to determine the asymptote in K of EK (1, W)

for the uniform, narrow, spatially uncorrelated source. For this source in

the noise free case the hydrophone CSD is, from Appendix A.

S = s e(p,p+k,w)

2 sin[ 2r(p,q)W] (F-19)= a (ni) pqT(-9
I r(p-q),y

F-9
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But from (D-38)

S H (a M ejk a da
Sk(,w) = 1 He c~~

so if -y < Tr, choosing

2(ci,w) =_ °I (
__ F c'

He Rect E , cc[- 71 (F-20)

I where

Rectf = rwhere

yields the correct Sk(w). This function, H e(,w) satisfies the conditions of

the Strong Szego Limit Theorem, stated as Theorem 5a in Appendix D, so

that

Ek(1,w) - G(w) L sin Try t (F-21)

where - denotes asymptotic in K and, from (D-58),

G(w) exp [ ] log Rect4[W de

L
(F-22)

F-10



where

hr e t 1 2 sin - [s in ( T W c o s ] 1 -i , 12sin l [s in ( TTV c o s e] I 2 W
Rect 4TtW 1-0, otherwise (F-23)

- - -- s in (TrW)

sin x 4 . cosesn(O'W)

/I'

ni sin(TrW)cOsO]

Figure F-4. Relationship Between TW

and sin- [sin(TTW) cos e]

But from Figure F-4, it can be seen that

sin- [sin(rW) cos e] 1 -WI, all 6F(-T,7T)

or

2sin-[sinOnW) cos 6] 4 I2TVWI, all 6E[-n,Tr)

which implies that

2 (w)

GM exp log d (F-24)

so that

2a (W) 2K+1
EK(1,W) sin iTW (F-25)

F-11



Thus for large K, the canceller output spectrum goes to zero exponentially in

K, with the rate dependent upon sin (TM).

F-12



I
I

F.2 Interference Plus Noise Case

When ambient noise is present, the change in the irreducible canceller

output spectrum, E. (1,w), as W transitions from W<2 to W>I is not quite as

dramatic, but still supports the notion of W=j as a spatial Nyquist criterion,

particularly at high interference to noise ratios. Figures F-5, F-6, F-7, and F-8

show
Ec (1,~) (F-26)R ( 1 w) = 2 (Pj 2 ( )

as a function of W for interference to noise ratios of 40, 30, 20, and 10 dB,

respectively. The interference to noise ratio is defined as

M - r (F-27)
Tn2n

When noise is present it can be seen that it may be necessary to choose W signifi-

cantly less than 1/2 to achieve acceptable cancellation, even with a larte number of

reference hydrophones. Of course, from Appendix D, the extended source

cannot be cancelled to the noise floor when Un 2 () 1 0.

For high interference-to-noise ratio, 2 r 2 (W)/,rn2( w ) > > 1, so thatFonrw ,sota in

(F-10) for n > 1

Sbn (F-28)

and (F-9) Is approximately

E'019W)k20-12 (W) n + )nL2 w - n  (-922 2w

F-13
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FIGURE F-6. Irreducible Canceller Output
Power vs W for Sin x/x CSD
interference-to-noise

Lratio =30 dB
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~Power vs W for Sin x/x CSD
~interference-to-noise
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Hence, for high INB andY'>1/2 (n>1), the interference plus noise case reduces

approximately to the noise free case.
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APPENDIX G: CANCELLATION OF A SOURCE PRODUCING AN
EXPONENTIAL HYDROPHONE CROSS-SPECTRAL DENSITY MATRIX

Jd __

d4- .- d .. *d V 4-- md

PR I MARY

REFERENCES

Figure G-1: Array Geometry for Cancellation

Consider a line array of K reference sensors used to cancel, in the

minimum mean square sense, an interference from the output of a primary

hydrophone which lies along the same line as the references. Let the

references be spaced d feet apart, and let the space between the nearest

reference and the primary be md feet, as shown in Figure G-1. Suppose

that the ambient noise field produces zero mean noise with spectral density,

o n(), at the hydrophones, uncorrelated from hydrophone to hydrophone.

In addition, the noise field contains an extended interference which

produces zero mean noise at each hydrophone with the cross-spectral

density between hydrophones spaced kd apart given by

2 -B(w) Ik Id
1 M(G-1)

t h th
Then the cross-spectral density (CSD) between the p- and q-

hyrdophone outputs is

e (p,q,w) = cn 2(W)6pq + a I 2 (w)e - B(w) [P-qtd (G-2)

G-1



th
while the CSD between the p- reference and the primary is

s e(P,j,) = ()e-B(, 1p-J Id (G-3)

Appendix C developed the power spectral density of the minimum mean

square canceller using K references as

det [SH(K,w)] (G-4)
EK(w) = det [S (K,w)] 

where

Se(Kw) = (Se(P'q)) p=0,1 K1 (G- 5)

p=O, 1..(K-1

and

S H(K,w) = Se(K,w) s 1(K w) (G-6)

with

s (K,w) = [Se (o,J,w), s e(1,J,w), ... , s e(K-1,J,w)1 T  (G-7)

S(w)_ 2 2(w) (G-8)
11 n(w)+G

G-

G-2



I

For the model being considered here, it can be seen that

0 1 2 K-2 K-i

1 0 1 ,K-3 K-2p + 0

Se(K,w) = ui2(W)  2 1 3 + 0 K-4 K-3 (G-9)

B+o 0

K-I K-2 K-3 010

with

2 2B n /I

-Bd

e

and

rm+K- 1

m+K-2

S H(K,w) - (u) (G-10)

1 S (K ,wo)
a(w)

m

L m+K-1 
em+K-2 

m + p0

G-3



G.1 Special Case: m = 1

In the special case where m = 1, both S e(K, w) and SH(Kw) are Toeplitz

[15]matrices. This allows use of the results of Szego , as discussed in

Appendix D, to determine the irreducible canceller output power for the

LMS canceller with a source producing an exponential CSD. It will be

convenient in this Appendix to explicitly indicate the value of m in the

notation for the canceller output power, so let

EK(mW) = E K(W) Imd = distance between reference array and primary

From Appendix D, let

Sk = Se(p,p+kw) any p

so that

SO SI .... Sk-1

Seo(Kw) =S-I S0 S1  .. . k-2

S-k S-k+1 So0

Then from Appendix D, the irreducible canceller output power at frequency

W is

E 0(1, w) = lim EK(lW)

= exp ( f In He(Ct,0w)d

G-4



where

H E S e ka

k -

In the special case of an exponential CSD, (-)

with

1I, k=0
6 (k)

S0, otherwise

then

det [SH(K,w)1 [a1 (w)]K 'det [S e(K+1,w)],

and

H e (,)= B+ 1: Pik lejkc

k=-oo

+ - 1 2 2G 
141-2 PCS(+Q(-4

-(P 2 + (1-P 2 
-

2 pcocL

1-2pcosa+p'

G-5



therefore

iHe (c,) =-ln(l+p2 ) - ln(1 -2
21 2

In H aw l~~ n l +P2 Cos ax)

(G-15)

+ In [B(1+p 2 ) + (-p 2)]+In (1 - 2 p 2osC)(+2) + (1-p 2) cst

Fortunately,

jIn (I-Acos ct]dc.= 2rrIn (G-16)

so

Tr1 2p
- n - c 2 oscL] da In (G-17)

1 + p [ --

and

[ + 1 - 2 cos dp 2-
1 + -

- (l+p_ _ ( (_ )  2 (1

(G-18)

Then

G-6



n H(c~dca -In (l+p2) -in + 1Q)

[ + 2 ) 2+ (+12 
) 

2 ) 2~p 
)

+ In [ 1+p ) + (1-P 2  + In1p 2  (- 2 ) 2  (6)]

in [6(1+p 2) + (1-0 2) + / [6(l+p 2) + (1-p 2 )] 2 
-(253P)

2 ](G- 19)

Therefore

E.(~w)[cy2(w)K+1 det [Se (K+,w)]

E(1,2w(W) 2 K det [Se(K,w)]

a, 2 2 ( exp [,, f in H (cX i l ) Xj

a, (1+p 2 + (1-P 2 +[a$(l+p 2 (102 l2 -8p 2

(G-20)

G-7



Now as p - o (for example, as the hydrophones move farther apart,

d - o ),

lim E (l,w) = aI2(M +I +2 a 2 +C(7) (w) (G-21)ur cx(1W 2 1 n
p- 0

which shows that there is no cancellation, as would be expected. On the

other hand, as p - 1, the references become coincident with the primary and

lim E (1,w) = an2(W) (G-22)

which indicates perfect cancellation.

Next, consider B - o, indicating the noise free (interference only) case.

Then

lim E (1,w) = a,2(w) (1 - p ) (G-23)

Therefore, even in the absence of a noise floor, the interference is not

cancelled completely. This is a significant difference between the exponential

cross-spectral density and the sin x/x CSD considered in Appendix F.

G.2 General Case; m>l

Return to equation (G-10), and observe that if the Kt h column of

SH (K,w) is multiplied by pm and subtracted from the last column (which

does not change the determinant), it becomes

G-8



00
2 ()S (K,w)
1w2 (G-24)L opII

m+K- 1 m o 2mP . . . P a3+pO_

Repeating this on the Kt h row and the last row gives

0

0

i2( Se(K,w) .
aI(W)oe (G-25)

2
( W) a

o o .. o -pm (a + p o 02m + p2m)

Under these operations, the determinant is unchanged, so det (SH(KI)1 is

equal to the determinant of (G-25), which is easily shown to be

det[SH(Kw)] [a1 2()] [(1+p 2m ) + (-p 2m)] det [Se(K,)]

_ [1 2 (W)]2 a2 p2m det [S e(K-1,w)] (G-26)

then

= det [Se(K,w)]

det [S (K-1,w)]
= 2 (w)[t(1+p2 ) + ( 2-pm)] [I 2 (  dt [S(K,)]

e

(G-27)

G-9



The limit of the ratio of determinants, using (G-12) and (G-14) is

det [Se(K-l,w )] i 2(~_

lit det [Se(K2,)] a [ exp 1 -- In He(a,w)do.
det [ S e-(K, w) F e

j2()l-1 3(1+p 2 ) + (1-p 2 ) + vr2(+p 2) + (1-p2)]2 - (2Bp) 2

2

(G-28)

Therefore

E (m, w) =a 2 (W) [ $(l+P2m) + ( 1-p2m)]

2a2 p2m

6(1+p 2 ) + (1-p 2 ) + V[BCI+p 2) + (1_p 2 112 (2Bp) 2 I

(G-29)

When m = 1, this reduces to (20), as it should.

Now, when p - o, this goes to

2 2 2lim Eo(m,w) = j,( M [B+1] = a1 2() + an ( (G-30)
p- a

again indicating no cancellation, as would be expected. When p 1,

lim E(m,w) = a n2 M (G-31)

which shows that the interference is completely cancelled when one of the

references is coincident with the primary. Finally, when a -o a, the

noise free case,

lir E(m,w) = 1 2(4[1-p2n (G-32)

G-10



The fact that the canceller output power has the lower bound (1- p m )

ai2(2) in the noise free case can be explained in terms of the special nature

of the exponential CSD. The sequence of reference hydrophone outputs at

a single frequency can be shown to be a first order Markov sequence. As a

result, in the noise free case, the optimal canceller uses only the output of

the reference closest to the primary and achieves the bound (1-p 2m ) a2(w)

with that single reference. Adding further references does not reduce the

canceller output power.

The amount of cancellation achieved by the canceller is best characterized

by the minimum relative canceller output power, given by

Eo(m,w)
ER(m, W0) (G-33)

ai2(W + an2(W)

where a 2 () + an2  is the output power of the primary hydrophone

without cancellation. Noting that

ai2(W) + an2(W) = (i2(W) (1 + 6)

gives

ER(mW) 1 + (+p 2m) + (1-p2m

262 p2m

6(I+p2 ) + (1-p 2 ) + [7 67 7 +p ) + (1-p 2 )] 2 - (26p) 2

G-11



Figures G-2 through G-6 plot the minimum relative error given by (34) as

a function of p for values of 10 log (1/) of 50, 40, 30, 20, and 10 dB

respectively. It can be seen that cancellation to near the noise floor,

a 2(w), requires that the primary and references be very highly correlated.n

This is again due to the Markov nature of the hydrophone outputs under the

exponential CSD. At high interference to noise ratio, the optimal canceller

uses only the reference closest to the primary and the outDut oower is

proportional to (1-p2m ). Additional references have no effect. so the can-

celler depends completely on the proximity of the closest reference to the

primary to achieve cancellation. Hence, p must be very close to unity to

produce cancellation to near the noise floor. Again the curves in Figures 2

through 6 approach /(l+4)= an2(W)/(Gi2(W)+an2 M) as -n )/ai ~)+n ()) s o* 1because

the model maintains the ambient noise as uncorrelated from hydrophone to

hydrophone, regardless of p.

G.3 Comparison With Results for Sin X/X Cross-Spectral Density

Appendix F considered the line array structure of Figure G-1 with an

extended source producing the hydrophone CSD,

2 2 sin[(p-q) T 4 sin 0o
S (pqw) = a (W) 6 + a(I () c 0 (G-35)

- (P-q) c -

This represents a uniform source with angular extent ± about the angle o0

in the same plane as the line array. For convenience, let

d sin (b (G-36)
Y0

and

W = Y (G-37)

G-12
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so that G-35 can be written

s (p2q) 2 ( 2 + 2 sin [2Tr (p-q)W] (G-38)
e n pq - (P-q)-

The minimum canceller output spectrum for this CSD has been determined

explicitly only for the case m = 1. In the noise free case, using the results

of Widom [12, it has been shown that in the absence of ambient noise,

2(w) = 0, the canceller output spectrum, EK(l J), approaches zero

exponentially with the number of references, K, if W < 1/2. Then the

minimum canceller output spectrum is

E 0; c(w) 0, W < 1/2 (G-39)

Note that W = -y is analogous to the product B(w)d in the exponential case.

The result given in (G-39) is a significant difference between the sin x/x

CSD and the exponential, which gave

E.(1,w) = ai(W) (1-Q 2 ) ; a 2 0 (G-40)

regardless of B(,.)d. This difference is due to the Markov property

underlying the exponential CSD.
2( n n+l

In the noise free case, c 2w) = 0, when 11 < W < E for n = 1, 2 .

the minimum canceller output spectrum is given by

2 1 2W-n

E(I,w) = 2Di2 (w) n(l+ ) (G-41)

G-18



The primary hydrophone output spectrum without cancellation is
s2(

2o (,j) so that the relative canceller output power for the sin x/x CSD is

12W-n
E (1,w) = n(1 + I ) (G-42)

R n

This is plotted in Figure G-7 for n=l through n=5, and shows that cancella-

tion is severely limited if W > 1/2. This sampling criterion in the noise free

case does not have an analog in the case of the exponential CSD. On the

other hand, when B(w)d > 1/2, analogous to W > 1/2, then o < .606 and the

cancellation for the exponential CSD is

ER(l,W) > (1-p 2 .632

so that significant cancellation is not achieved in the exponential case

either. The degradation is much more graceful in the exponential case,

however.

10

0.94

0.94 [ I I

0.5 1.0 5 20 25

W

Figure G-7. Minimum Canceller Output Power
vs. W. for Sin x/x CSD, m = 1
Interference-to-Noise Ratio =
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Of course, the case when noise is present is of much greater interest.

It is shown in Appendix F that for m=l, with noise present the CSD given in

(G-38) yields

Eo(Iw) 2W S(1 + 1) (G-43)

for

n < W - , n = 0, 1, 2 ... (G-44)
2

and

2W a 2(W)
S = n + n (G-45)

2 2Dcy

For high interference to noise ratio, 2oi2 (W)/an 2(w) >> 1,

S:n, n = 1, 2, ...

so that for n > 1, this reduces approximately to the noise free case, (G-42).

For W < 1/2

/ 2 \2W
2~ I 24' (w-)

E(1,w)= a n+ 2W n2 , W < 1/2 (G-46)

When W = 0,

E (lw0) = n 2 (M) (G-47)

G-20



indicating cancellation to the ambient noise floor, and when W = 1/2

ER(1, ) = an(w) + 2( oi2(M (G-48)

so that no cancellation occurs.

It appears that the parameter B(w)d in the exponential case and

W = d 0 sin ° in the sin x/x case play a similar role, relating the distance

between hydrophones (spatial sampling interval) to the source extent (0)

or the CSD bandwidth, B(w). Therefore, in order to compare the behavior

of the optimal canceller with the two CSD's the irreducible relative

canneller output power, ER(1,w) was computed as a function of B(w)d

and W, respectively, using (G-34) and (G-43). Figures G-8 through G-11

show ER (1,w) for the exponential CSD for interference to noise ratios of

40 dB, 30 dB, 20 dB, and 10 dB for B(w)d varying between 0.0 and 2.0.

Figures F-5 through F-8 show ER (1,M) for the sin x/x CSD for the same

range of INR with W varying from 0.0 to 2.0. The following observations may

be made regarding the figures, letting W = B(w)d for convenience;

(a) If W > 1/2 in the sin x/x case, virtually no cancellation is

achievable, as already observed. No such sampling

criterion is apparent for the exponential case, but cancellation

is still severely limited for B(w)d > 1/2. Either CSD requires

a value of W much smaller than 1/2 if the canceller is to produce

cancellation in the 10 to 40 dB range.

(b) The optimal canceller produces better results for the exponential

CSD for W larger than approximately 0.4. However, in the

important region of small W, producing more than 10 dB of

G-21
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cancellation, the canceller is better able to reject the sin x/x

source. This is due to the Markov property of the exponential

source, as discussed above.

G. 4 Conclusions

The minimum canceller output power has been obtained at a single

frequency, w, for a source producing an exponential CSD along the line

array of references. In the case of m=1, where results exist for the sin x/x

CSD, the exponential CSD produces significantly different results than the

sin x/x case, as noted in (a) and (b) above. The differences between the

two reflect a Markov property inherent in the double exponential CSD. It is

likely that the differences also result from the fact that the sin x/x CSD is

produced by an angle limited source, while the exponential case results

from a source distributed on (-i,Tr). Like the sin x/x CSD, the source

producing the exponential CSD cannot be cancelled to an ambient noise

floor for m=1. Further, the minimum canceller output power is shown to

increase with m, just as the numerical results indicated for the sin x/x.

However, the parametric behavior of the canceller with the two CDS's

differs sufficiently that the exponential case cannot be used to predict the

canceller performance with the sin x/x CSD.
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APPENDIX H -SPATIAL RESPONSE OF THE LMS CANCELLER IN THE
PRESENCE OF AN EXTENDED SOURCE

Aithough the primary emphasis of this study has been on the

cancellation of an extended interference, without regard for the effect of

the cancellation process on a signal of interest, the eventual application

of the canceller will involve detection of a plane wave signal that is masked by

the interference. This Appendix therefore considers the plane wave response

of the cancelled output as a function of the angle of a plane wave signal. In

other words, given a primary hydrophone with unit weighting and K refer-

ence hydrophones with the frequency domain LMS weighting

_S 1( ) I S(W )  (H-1)

what is the spatial response, or beam pattern, of the canceller output.

The spatial response at frequency, w, of an array of K+1 hydrophones

with arbitrary weighting

W(W) = [Wo(w), W2 (W), ... Wk(W)]T (H-2)

with Wk(w) the weight applied to hydrophone k at frequency is given

by

B (Cs) = W(w) d1 2  
(H-3)

where

d =r ec " T  j  l . j -'k-1

.. . e (H-4)

H-i



and

rk = propagation delay to the kth hydrophone.

For the spatial cancellation problem with the array geometry of

Figure H-I,

d k oSs
c k=O, 1, ... K-I (H-5)

k d J Cs (H-5
c k=K

that is, the Kth hydrophone (the primary) takes the Jth position. By

the first paragraph in this section,

W( ) = [ M () (H-6)

1

The vector, d, can be written as

d [ wd J (H-7)

-e c

where

d -0d(K-i) cos s
,1 e j " ... , ej c (H-8)

H-2



Then (H-3) yields

B (.p) e3 C s l(. e- (W) d 0  (H-9)

Now, assume that the extended source is the uniformly distributed,

uncorrelated, narrow source defined in Appendix A, satisfying (A-26),

(A-36), and (A-40). It is shown in Appendix E that for this source,

-1-

Y G( jk1K + H-
S -G 2 2 + (Kwj YkKW) 4 (K,W)G (H10

where y = d/X sim and

Kk (K,W) = V'K(kW',W, I ()K,W)j , k (,W (H-li)

{Vm (k) (KW)} m=O, 1, .. K-1 is the kth Discrete Prolate Spheroidal

Sequence (DPSS) index limited to [0, K-i], and X k(k,w) is the associated

eigenvalue. Also

G = diag Kiei T p Coj (H-12)
p 0 O, 1 , . . K 10

H -3



Using (H-10) gives

! I - 1 2- 2 ( K__ _ _ _ _ _ 1 1 G V ( K , .. )
_1( ) s -C() d = 20 2 ~ ~ - --) kK'J

k=On(w)+ cl(,.)X k( K

"[Vk (K, ) G d]

K 1 7I2(-) k ( K ,' w )  vj k e j C cos €0

=~ ~ -- (-K'- , " Kk=0 n () ' k K  )

"[-k (K,,) G d] (H-13)

using (E-18) and (E-19) from Appendix E. Note that

K-i m (cOs -

Yk(K,L) G d = I V(k)(K, . ej c (H-14)

m=0

is just a Fourier transform of the DPSS.

Using expressions (H-13) and (H-14), the spatial response of the

canceller in the presence of a uniform extended source has been evaluated

for various values of source extent, 2( , source angular position, 0, and

interference to noise ratio, INR. Figures H-1 through H-8 show the spatial

response when m=i, so that the reference array plus primary comprises a

uniform array, with the following parameters:

d/X = 0.5

INR = 40 dB

H-4



2,= interference source extent =201

;0 = interference angle = 450

The figures show the response for the number of references, K, equal

to 1, 2, ... , 8 respectively. In Figure H-i, with only one reference, the

array response only has a single null which is steered to the center of the

interference source. As more references are added (in Figures H-2

through H-8), the notch in the spatial response at 450 broadens to approx-

imately 200 wide, the extent of the source. For K < 7, this broadening

of the notch is accompanied by a considerable attenuation of the response

in other directions. For example, with K=2, there is a 15 dB attenuation

at endfire C0=0o), even though the interference is 450 away. Gradually,

as more references are added, the notch sharpens, becoming more nearly

rectangular, and the attenuation at other angles away from the interference

decreases to a more acceptable value.

Note that once K=3 or 4, additional references do not appear to deepen

the notch very much, suggesting that further interference cancellation will

not be substantial. For the parameters given above,

W 1 sin o=.062

Figure K-21, which shows the canceller output spectrum as a function of

K for w=. 06 and INR=40 dB, verifies that little further cancellation occurs

beyond K=3. Therefore, Figures H-i through H-8 indicate that the reason

for adding references may be to assure adequate signal response in some

direction other than the interference arrival angles. For example, in Fig-

ure H-3, with K=3, a signal arriving at 600, 150 away from the interference,

H-5
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suffers 25 dB of attenuation, while when K=8 in Figure H-8, the signal

attenuation is only 12 dB.

When interpretting these figures it should be kept in mind that the

primary consists of a single omnidirectional hydrophone, rather than an

array, as would be used in most sonar situations. As indicated in

Appendix L, when a primary array is used, the responses like those of

Figures H-1 through H-6 would be multiplied by the response pattern of

the primary array. This would greatly attenuate (by the primary array

sidelobe level) those regions outside the mainlobe of the primary array.

Assuming, then, that the reverberation that limits the active detection

performance arrives on or near the main lobe, the signal response in the

vicinity of the notch is of primary interest. The reason for adding

references would then be to increase the slope of the sides of the notch.

It is observed in Appendix K that as the primary is moved farther

from the references, the cancellation of the extended source degrades.

Figures H-9, H-10, and H-il, which show the spatial response for the

same case as H-i through H-8 but with m=5, 10, and 20, respectively

confirm this. The depth of the notch is 40 dB, 32 dB, and 23 dB for

m=5, 10 and 20, respectively while m=1 gives a notch approximately 47 dB

deep. In addition to the reduction in cancellation as in increases,

Figures H-9 through H-li show that there is a degradation in the

array response to signals arriving from directions other than the angular

H-14
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APPENDIX I - USE OF THE OUTPUT OF A STEERED LINE ARRAY AS THE

PRIMARY

In most situations, the primary input to the optimal canceller is not

the output of a single omnidirectional hydrophone, but that of an array of

hydrophones steered in some direction of interest. The directional res-

ponse of the array will reduce the effect of reverberation arriving outside

the mainlobe by an amount equal to the sidelobe level, but reverberation

arriving in the mainlobe will remain unattenuated at the beam output.

Further, situations occur in the sonar environment in which reverberation

arriving in the sidelobes has sufficient power to prevent detection of a

much weaker signal in the mainlobe.

This Appendix considers the case when the primary input to the

canceller is the output of a line array of hydrophones, colinear with the

reference array as shown in Figure I-1, and steered in a direction 0d' as

shown. Let the N hydrophones in the primary array be uniformly spaced

d feet apart, and let the distance between the primary and the reference

array be Ld feet, as shown in Figure I-1. The plane wave assumption

made in Appendix A is assumed to be valid over both the reference and

primary arrays.

The outputs of the N hydrophones in the primary array are denoted

Yn(t) for n=O, 1, ... N-i. A beamformer steered in the direction d

computes its output as

N-I dI

z(t) N an Yn (t- (N-n-i) -- Cos (I-1)I n nI-idn=0

I.-'



Further, the n n(t) are uncorrelated with the ambient noise components of

the reference hydrophone outputs,

nIn=0 , ... N-1
E [nn(t) nk(t+T)] = k=O, 1, ... K-1 (1-4)

Since z(t) replaces ed(t) as the primary input to the canceller struc-

ture, (A-14) becomes

ri(k, T) = Ez(t) ek(t+T)]

o/
=E a n n (t-(N-n-I) -- cos

, n=O

N-1

+ an I i{t - [(L+K-I) d-+ nd c - (N-n-i) cos d l)dol
n=O T-

* nk(t+-) + i (t+T-k I- cos d

1 ~ - Tr

N-i IT d

= a~ R1 (-r + P [(N-i) cos
n=O -T --

+ n (cos - cos I2)] + d- [L+K-1] cos 1 - d-cos 1 dod

(1-5)

1-2



Therefore (A-15) is replaced by

s 1 (k, d = [r 1 (k,i)]

N-1

aS 1(¢ 1 ' ¢2' w)exp {-j w [(L K-1) d cos
n=O 7T -r

- kd cos o2 + (N-1)odp cos Od

+ ndp (Cos 01 - cos Od)]) do, do2

ffr N-1

=-S a n exp {-j -

f I frM '~)I nC

[nd(Cos - cos 0d)]} exp -j [(L+K-1)d cos

-kd cos 0 2 +(N-I) dp cos d} do, d02  (1-6)

The bracketted term is just the response of the primary array, steered in

direction 0d, to a plane wave from direction, . Denote

wd
N-1 -- Pn8

B (e) = an e -  c (1-7)

n=0

1-3
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0 if ~K~ 0 2 N-1

delay delay a e ay
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a a!

primary
input

Figure 1-1. Use of a Line Array as the Primary Input

where the an are real shading coefficients. This beamformer output

replaces ed(t) as the primary input to the canceller. Extending equations

(A-6) and (A-7) to the primary array gives the hydrophone outputs as

T

yn(t) = n(t) + i [t - 1 [(L+K-1)d + ndp] cos f]d¢ (1-2)

where 1n(t) is the ambient noise component of the output of primary hydro-

phone n. As before, the rn t) are assumed to be zero mean, stationary

random processes with

E [n(t) n1 (t+t)] = R() 6nm'  =O, 1, N-1 (1-3)

1-4



so that

Sl (k,w) = f fT SI( 1 , w2, )B(cos p1 - o Pd )

-7T -T

exp {-; [(L+K-1)d cos 1- kd cos 2 d~idp2

exp (-j c (N-1)d cos(-8)

Comparison of this result with (A-15) shows that the case with a

primary array can be treated by placing a single primary hydrophone a

distance Ld from the nearest reference hydrophone if the hydrophone has

the directional response

H(¢) = B(cos O-cos 0d ) exp (-j w (N-i)d cos d (1-9)dc p d

This equivalent model is illustrated in Figure 1-2.

Similarly, it can be seen that (A-16) becomes

N-1

r l() = E [z(t) z(t+)] =I an 2 R n(T)

n=0

N-i N-i T d

+ a1 aam f fJR,{ -- P-2 n~cslcs
11=0 m=O -7r -

d

+ .Cam (cos 02- cos Cd) , 1' ¢2 dld¢ 2  (1-10)

1-5



= a+ f ff f 1 ( 1 ' 2' w)B (cos 1- cos ¢d)
Ln=0 - -

B*(cos o2 - cos d) d4 Ido2

This result shows that in the equivalent model of Figure 1-2, the spectral

density of the ambient noise component of the primary hydrophone output

must be

z2 (W) = [ n2  Y n2 (W) (1-12)
Ln=o

Next, consider this model in the special cases discussed in Appdenix

A. 1. Under the narrow source approximation,

s 1(k, = f SI(¢00 + ¢ ,O + ' w)B (cos (o. + l) -cos d)
-¢, - )

exp f-j w [(L+K-1) d cos ( 0 + 2 doid42

exp f-j i (N-1) d Cos~d

zei wd (K L-i-k) cos j0 f "1  0 + ¢1 0 0 + '2' w)

[B (cos(0 + 1 - o exp {-j w- (N-i) dp cos d

d

exp {j -- [(K+L-I) 01 - k2 sin0 d 1 d 2  (1-13)

1-6



(K-l)d

4- d d

Ld ....1~j 1K%%Directional Response, H(4 )

Figure 1-2. Equivalent Model for Primary Hydrophone Array

and (A-17) is replaced by

S1 1 (~ 1 n] n ~ 01'w + 0 2' w)

N-1 wd

a n expfI-j c n(cos I- Cos d
Ln=O

L In exp (j~ ] ~o o Id

1-7



and

f~ f4  
+4Sl1( ) ) + S1(cp0 + 1' ¢ 2

B [cos(O0 + 01 ) - cos 0d) B*[cos(O0 + 02) - cos OdI d.ld42

(1-14)

Equations (1-13) and (1-14) correspond to (A-27) and (A-28), respectively.

When the source is additionally assumed to be spatially uncorrelated

(1-13) and (1-14) further simplify to

- (K+L-I-k) cos 40 f
z e c 0 J S 1 ( 0 + ¢, W)

d
[B (cos(4 0 + 0) - cos d exp {-j P (N-i) cos

exr t-] -- (K+L-l-k)O sin 40 do1 (1-15)
c0

and

S 1 1 () Z 
2 (w) + f SI(¢ 0 + ¢, w)IB [cos(4 0 + 4) - cos d ] 12 d

(1-16)

I-8



In Appendix A. 2, the case when the extended source is uniformly

distributed was considered. Under this assumption, the CSD, s I (k, w),

and the PSD, S 1 1 (w) assumed the simple forms given by (A-40) and

(A-41). When an array is used at the primary input and the source is

uniform as defined in (A-38), (1-13) and (1-16) become

' -d (K+L-l-k) cos Oo .)

s 1 (k, w) e- c A 2(M

d
[B (cos( 0 + 0) - cos 0 exp {-j L2 (N-i) cos 00 d c d]

exp {-j -- (K+L-1-k) 0 sin } do (1-17)

and

11(w) z z2 (W) + a a1
2 ()1B [cos(%0 + 0) - cos dl 12 de (1-18)

Hence s 1 (k,w) does not reduce to the sin x/x form given in (A-40) unless

B [cos(0 0 + ) - Cos d ] is constant for 0E [- fl, ]. That is, the form of

(A-40) only occurs if the directional response of the primary array is

constant, or at least nearly constant, over the extent of the interference

source.

1-9
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APPENDIX J - THE USE OF AN ADAPTIVE LMS CANCELLER IN THE
NON-STATIONARY REVERBERATION ENVIRONMENT

In practice, the second order statistics of the reverberation are not

known, and the canceller is implemented using a multiple LMIS adaptive can-

celler structure as discussed in the Introduction. However, most of the

work in this report has considered the performance of an optimal (in the

least mean square sense) canceller with stationary extended source. Since

the LNI~S adaptive filter converges in the mean to the discrete Wiener filter,

the performance of the optimal filter can be regarded as representative of

that of the adaptive canceller if algorithm noise, sampling, and finite filter

length effects are negligible. The assumption of stationarity is necessary

for the formulation of the problem in terms of the Wiener (LMS optimal)

filter.

In a passive sonar environment, the assumption of stationarity on the

canceller inputs reasonably models most sonar problems. On the other

hand, the active sonar environment, taken as a whole, is markedly non-

stationary. A transmission cycle will consist of a transmission, followed by

periods in which reverberation from various sources (surface, bottom, con-

vergence zone, etc.) dominates the noise field. Between reverberation

periods, the ambient noise will be the primary limitation on sonar perform-

ance. It is therefore necessary to consider the effects of this non-

stationary noise field on the performance of the adaptive canceller and any

modifications to its structure necessary to accommodate this environment.

The canceller structure being discussed here is directed specifically

toward suppression of surface reverberation from the convergence zone.

If the filter is adapting during periods which the noise is due to the



ambient field or to reverberation from other sources, then the filter

weights may not be reflective of the convergence zone reverberation. In

order to allow detection of targets appearing during the onset of surface

reverberation during any given transmission cycle, the canceller must have

acquired enough information about the reverberation statistics during the

preceding cycles, and retained enough of that information between the

reverberation periods.

It is well known [uthat the LMS adaptive algorithm adapts much more

rapidly in an environment producing correlation between its inputs (such

as reverberation from any source) than to one producing uncorrelated

inputs (such as ambient noise field would). That is, the filter "learns"

the correlation properties of an input rapidly in comparison to the way it

"forgets" those properties once the correlation disappears. Therefore, in

order to maintain the properties of the convergence zone reverberation in

the filter weights, it is first essential that all other forms of reverberation

ae excluded from the adaptation process. Because of the long range to the

convergence zone, this can be done by freezing the adaptive weights fol-

lowing transmission until all other forms of reverberation have died out,

then starting the adaptation process. Since the two way propagation time

to the convergence zone is so long, the adaptation could be started some

fixed time interval after transmission.

The question then arises as to the effect of the periods in which only

ambient noise is present on the filter weights. This can be analyzed for

a single reference structure using a simplified, approximate model, as

follows. The LMS algorithm for real weights is given by [ 31

W (N +1) 1 I X (n) XT (n) ] W (n) + pid (n) X (n) (J- 1)

J -2



where

W(n) = weight vector at time n

X(n) = reference hydrophone output data vector

= [x(n), x(n-1) .... x(n-M)]T

d(n) = primary hydrophone output sequence

U = adaptation constant

Using the assumption that the present weight vector is uncorrelated with

the present data vector and averaging (J-1) yields a difference equation

for the mean weights,

E [W(n+1)] = [- Rn)] E [W(n)] +lRdx(n) (J-2)

where

( = E [X(n)xT(n)]

Rdx(n) = E [d(n) X(n)]

If R xx(n) and Rdx(n) are independent of the n, then

lir E[W(n)] = Rxx -dx (J-3)
n-w

which is the discrete Wiener filter as indicated above.

Now, assume that a pulse is transmitted starting every T seconds, and

that the weights are frozen during the period nT + Tw, that is, for the

Tw seconds following the start of each transmission as shown in

Figure J-1. This presumably excludes all reverberation except for

J-3
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I!

convergence zone from the filter surface reverberation during adaptation.

From the point of view of the adaptive weights, then, the input consists of

the intervals [nT + Tw , (n+l)T] for n = 1,2.... concatenated together as

shown in Figure J-1 to form a continuous input sequence. Suppose that this

concatenated input is sampled every T seconds to produce the inputs x(n)

and d(n).

First, consider the primary input to the canceller. Let the gate func-

tion, G(n), shown in Figure J-1 characterize the period during which the

reverberation is present. Let d (n) be the portion of the desired input

due to ambient noise and let rd(n) be the reverberation as seen by the

primary. Then

d(n) = do(n) + G(n)rd(n) (J-4)

Similarly, let x0 (n) be the ambient noise at the reference input and rx (n)

be the reverberation as seen by the reference. It is now assumed that the

gate function seen by the reference is just a delayed version of G(n), i.e.,

x(n) = x 0 (n) + G(n-A) rx(n) (J-5)

with A an integer. Then

X(n) = X (n) + HG(n-A)rx(n) (J-6)

where

XO [X (n), xo(n-1), ... xo(n-M)]T (J-7)

rx(n) = [rx(n), rx(n-1), ... , rx(n-M)]T (J-8)

J-5



and

HG(n- ) = diag [G(n-m-A)] (J-9)

m=0,1, ... M

Consequently

R (n) = PnI + HG(n-L)RRR HG (n-i) (J-10)

and

Rdx(n) = HG(n-A)Rdx G(n-A) (J-11)

where it has been assumed that the ambient noise is uncorrelated in time

with power, P and is also uncorrelated between hydrophones. RRR is

the reverberation return covariance matrix, and Rdx the reverberation

return cross-correlation vector. Note that the reverberation has been

assumed stationary during the period when G(n) is unity.

Now, consider HG(n-L) for o < n < k as shown in Figure J-1.

HG(n-A) is an identity matrix if

o < n - m - A <p (J-12)

for m = 0, 1, ... M, hence if M + . < n < p + A

HG(n-) = < n + k (J-13)G 'M + A < n < p +

Thus, for p-M iterations of the filter during the first p iterations,

HG(n-A) = I. Similarly, for o < n < k,

HG(n-A) = 0 (J-14)

J-6



if p<n-m-A<k for m = 0,1.... M. This occurs if p+M+A<n<k+A, so that

HG(n-A) = 0 for k-p-M-2 iterations during the k-p iterations from n = p+l

to n = k-i. These arguments can easily be extended to the successive

transmission cycles.

It now is assumed that the length of the filter, M, is much less than

the reverberation duration, p, and the duration of the reverberation-free

period, k-p. Then "most of the time", G(n-A) will be either I or 0, and

it seems reasonable that the short periods when this is not true will not

significantly affect the filter response. Then, approximately

HG(n-A) = G(n)I (J-15)

and

R xx (n)P01+G(n) RRR (J-16)

Rd (n) = G(n) G(n-A) Rdx (J-17)

If it is additionally assumed that the duration of the reverberation, p, is

long in comparison with the inter-hydrophone delay, A, then (J-11) can be

approximately written

R x(n) = G(n) Rd (J-18)

without significantly affecting the results.

Using equations (J-16) and (J-18) in (J-2) yeilds

E[W(n+l)] = (1(1-uP n ) uG(n)R } E[W(n)] + pG(n)Rd (J-19)
n JRR-

J-7



Since RRR is a positive definite symmetric real matrix, it can always

be written as normal form as

RRR - p A P = p- A p (J-20)

where P is an ortho normal matrix consisting of the eigenvectors of RRR'

and A = Diag [Xl' X 2 .X )

= eigenvalues of RRR

Hence (J-19) can be written as

E[W(n+1)] = {I(1-i.P n ) +I1 pT G(n)AP} E[W(n)] + pG(n)Rdx (J-21)

Multiplying (J-21) from the left by P and letting Q(n) = P E[W(n)] yields

Q(n+l) = {(1-ijPn)I - G(n)AIQ(n) + PG(n)PRdx (J-22)

Since the matrices inside the brackets are diagonal, each component of

Q(n) can be solved for separately

Qi(n+1) = I - P[PN+G(n) XI]} Qi(n) + PG(n)(PRdx) i  (J-23)

The above is a piece-wise constant parameter linear system with on-off

input and on-off system parameters. Then (J-23) can be contrasted with

the approach in [U] where the eigenvalues are constant but the eigenvec-

tors are not. Here the eigenvalues of (J-19) (not the eigenvectors) are

the functions of time. Thus transforming to the eigenvectors of the data

covariance matrix allows closed form solution for the mean weights.

J-8



Now (J-23) can be solved in a piece-wise manner as follows. Letting

(PRd) = ai, during the time 0< n <p (reverberation return is present)

n

Q.(n) = Q.(o) n + * ' gn-m

m=1

where

gi (P +.) (J-24)

Sgis the discrete time impulse response of the system described by

(J-23) when G(n) = 1. The sum can be written in closed form so that

(= Q1(o) gr + P 1 Jg) 0 <n <p (J -25)

Assume, for simplicity that Qi(o) = 0 all i. Then, for p<n< k,

G(n) = o and

Qi(n) = Qi(p) bn - p, b = 1 - PPn .  (J-26)

That is, when the reverberation disappears, the driving function of (J-19)

is zero.

The system decays from its value when the input disappears with

impulse response b n . After one complete period (n=k),

Qi(k) = Qi(p) bk-p = i g. i bk - p (J-27)

J-9



If one repeats the same arguments during the successive periods of G(n),

the following solution results

Si (1-ip ) m

Qi[mk+p] _ l-gi . gi p gk-pIr (J-28)

r=o

Qi[(m+l)kl = bk-p Qi[mk+p]

at the switching times. In between switching times, for mk+p < n < (m+l)k

Qi(n) = bn - (mk+p) Qi[mk+p] (J-29)

and for mk<n<mk + p

n-inkn-ink [i-gi n mk

Qi(n) = gi Q.(mk) + 1ia. (J-30)
i -gi

Equations (J-29) and (J-30) have simple physical interpretations.

Equation (J-29) implies that, between switching times when no input is

applied, the system decays with a rate b from its value when the input

was last applied, while (J-30) implies that the system response consists of

(a) a transient response term gi n - i k Qi(mk) due to the initial condition

(Qin(mk)) when the input is turned on, with decay rate gi, and (b) a

response to the input ica* with the step response of first order system with

time constant gi' (l-g in - in ) / ( 1 - g i ) "

J-10



As the number of iterations increases, the Qi(n) becomes periodic

with

lim Q.(n) = bn - (mk+p) Qi(mk1p) mk+p<n<(m+l)k (J-31)
m->.w

f.Igin -mk (1-gP)gk-p 

lir Q (n) - n 1 + ( 1 -gin-ik mk<n<mk+p (J-32)
i 1-gi 1-iPbk-P

As a check, letting m-- in (J-28) and n=mk+p in (J-32) yields equality.

Also, letting n=(m+l) and m--, (J-31) and (J-28) yield agreement. Also

-im---n-= , p = k (no dead time)lira Q i(n) -

lim Qi(n) = 0 , p = o (no input) (J-33)

This result is analogous to the response of an RC filter to a periodic

rectangular pulse train as shown in Figure J-2. There is an initial tran-

sient buildup that tries approach a steady value that would occur with no

pulsing. Because of the pulsing, a decay is superimposed upon this

transient. If the response, when the pulse is on, is large in comparison

to the response when the pulse is off, the steady state value is quickly

achieved. If the reverse is true, then the weig, ts do not change signifi-

cantly. Two factors contribute to the response; the percentage of time in

each mode (duty cycle) and the rapidity of the response in each mode.

Now the rapidity of the response in each mode is given by gi and b with

gi n (Pn+k) i 1 - W = b (J-34)

J-11
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Figure J-2. Weight Response Analogy to RC Filter Response

Using (J-28), as m o,,

i (J-35)
Qi[mk+p] = (l-g i ) (1-giPb k - p )

Equation (J-35) can be viewed as consisting of three factors,

wa.

steady-state response with no pulsing = I (See Eq. (J-33))1- gi

transient response during one pulse = 1-giP

long term transient response = (l-giPbk-P)

J-12



Imbedded in the last factor is the time constant to achieve a periodic

steady-state. From (J-28), the factor in the sum can be written as

follows:

(Pbk-p) M= (giP/k biPkmJ3

However, km = total no. of algorithm iterations (ignoring relatively few

iterations during one period for large k). Hence, the factor gip/k bl-p/k

is the effective time constant of the pulsed system. Now

giP/k b1-p/k n[-(Pn+ i) k-i b1LP ) (1-IjPn)

= ] I- k (1-P n )  (J-37)

But p/k is the duty cycle. If PP «I and 1\. « 1, all i, thenn

p/k blp/k i, (I- P2 ) (1-uP) 1 - u(P n+ i P) (J-38)
k 1 n i k

Hence the response of the pulsed system is determined by the product of

;1u and the sum of the noise power plus the eigenvalue times the duty cycle

(sort of the time average eigenvalue). This result is very physically

satisfying.

Alternatively, in equation (J-37), the factor (1-giP)/(1-gi p b k - p) can

be viewed as the steady-state amplitude loss.
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One may now transform back to the original coordinate system to

obtain the behavior of E(W(n)]. Assuming steady-state periodic behavior

and using equations (J-31) and (J-32), for mk+p< n< (m+l)k

lim E[W(n)] = bn - (mk+p) E[W(mk+p)]
n-.

= b n - (mk+p) WP T Diag 1p 1g. P PR dx (J-39)i=0, 1, .M 19 1-gi P b k -

and for mk < n <mk+p

Tr 1
-g ip gin-mk n-mk

lir E[W(n)] = .P Diag b k -p  1-i PRdxn-gi 1-gP bk -p + 1-gifJPd

Sb(J-40)

It is clear from equations (J-39) and (J-40) that the mean weights are

time varying, even in steady-state. The mean weights are periodic, how-

ever, to determine the difference between the mean weight and the Wiener

weights requires specific knowledge of P. Note, as a check, for p=k,

(J-40) becomes

lim E[W(n)] = WpT Diag 1-gi P dxn-*w

= PPT Diag I( i P R

Rxx R =dx Wiener weights (J-41)
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Of primary interest are the weights during the time the reverberation

is present, given by (J-39). Note that (1-9.) = I - (1-ii(P n~:.)

P(Pn i),so (J-39) can be written

lrn E[W(n)] diag 1-i in-ink b k-p + _gnm

diag [PN ~dx

= T P n + A]l PR dx

+ PT diag Lgi nk] diag 1- P PP+Al R

=A1R - (1-b k-p) PTDn-ink D (-1-k (-2
x- dx D1 2(RXX -dx (42

where

D diag [gi] =diag [1- l(Pn+ Xi)] (J-43)

and

D diag [gpkpj

d dig 1- 1- WP n+ i Ifl-W 4In kp] (J-44)
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where R is the reference covariance that would occur if the

reverberation were always present.

Then the first term is just the Wiener weights that would occur if the

reverberation were always present, while the second term is a time varying

deviation of the weights due to the pulsed nature of the reverberation.

Note that since m simply defines the particular transmit cycle in which n

lies, (J-42) can be rewritten

lim E[W(n)] = R xx Rdx + (1-bk-P)P T D1nD2 P(Rxx -1Rdx) (J-45)
n-*o

with n' the time since the onset of reverberation in the current cycle.

At the beginning of the reverberation (n'=O)

lim E[W(n)] = R xx -dx + (1-bkp)PT D 2 P(Rxx Rdx) (J-46)
n-*oo

while at the end of the reverberation (n'=p)

lir E[W(n)] = R dx + (l-bk-P)PT D PD P(Rxx -1R dx) (J-47)

_ x -d 1 xx -dx

The conditions under which the weights converge to Rxx dx are that

either

(l-bk - p ) 0 >k = p (J=48)

or

D n' D 2 = 0 (J-49)
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But

DnI D = diag [1-P ] k-p (J-50)1+1-apl

For a filter with acceptable algorithm noise, [P n+-A] << 1, so

D n D >0 (J-51)

Hence the Wiener weights,R Rd are not reached in steady state

unless p=k, so that the reverberation is always present. This means that

the canceller performance is degraded fromthat which would be achieved if

reverberation were alwyas present at the filter input. The degradation

will depend upon the factor ( 1 -bk-p) and upon the time varying maxtrix,

1 Iln D2 , given by (J-50).

Of most interest here is the mean square error of the adaptive can-

celler, which represents the power in the output. This is given by

E[E 2(n)] = E[d(n)-WT(n) X(n)] 2

2 T
= E[d (n)] - 2E[W (n) d(n) X(n)]

T T+ E[W (n) XT(n) W(n)] (J-52)
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Just as in the derivation of the mean weights, (J-2), it is quite

common to assume that the weights are uncorrelated with the present

data, so that

E W(n)[E 2(n)] = E[d 2 (n)] - 2W(n) Rdx (n) + W T(n) R xx(n) W(n) (J-53)

where EW(n) denotes the expectation conditioned on W(n). In the actual

adaptive implementation, the weights are random variable which can be

written as

W(n) = E[W(n)] + Qw (n) (J-54)

with Qw (n) the zero mean, fluctuating part of W(n). Ignoring these

fluctuations is equivalent to neglecting algorithm noise, which reduces

(J-53) to

E[E 2 (n)] = E[d 2 (n)] - 2E[W(n)] Rdx(n)

+ E[WT(n)] Rxx(n) E[W(n)] (J-55)

If the reverberation were always present, then the inputs are

stationary, and ( ) yields the Wiener solution in steady state,

lim E(ER2  - R T -lk (J- 56)

(n) Rdd ~dx xx -dx

with R dd = E(d 2 (n)] under the condition that the reverberation is always

present. However in the actual case, it has been shown above that the

mean weights are periodic as n--®, and are given by equation (J-42).
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This can be rewritten

lir E[W(n)] = [I-A] IR- 1 Rd (J57)xx dxn-*o

where

A = (1-bk-P)PT D1 n-mk D2 P (J-58)

The matrix, A, displays the time varying nature of the man weights.

Note that when k=p, so that reverberation is on all the time, A=0, and

equation (J-57) reduces to (J-56). On the other hand, if p=o, so that

reverberation is always present, A=I, and the mean weights are zero, as

they should be in an uncorrelated environment. Substituting (J-57) into

(J-55) under the condition that the reverberation is present gives

lim [E 2 (n) it T -- 1 - T Ri AR AR R (J-59)

(n)] Rdd -dx x d + Rdx xx xx xx -dx
n-*o

The first two terms are just the mean square error that would be achieved

if the reverberation were always present, from (J-56), while the second

term is the increase due to the "pulsed" character of the inputs.

Now, denote the second term in (J-59) as y and use (J-58 to write

Y = (lbk-P)2 RkT pT D 2 (n-mk) D2 (Pn+A) - I P R (J-60-dx 1 kD 2 ~n dx

Let ai be the i h element of PRdx' which is the projection of Rdx on the

iL eigenvector. Then (J-60) becomes
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2 Dl
2 (n-mk) 2

K-i a. ii 2i

(lbk P) 2  (J-61)
i=0  2

where Dli and D are the i h diagonal components of D and D 2 f

respectively, and where i is the i-i eigenvalue of R xx This can be

written as

K-i 2 (Pn + X 2 (n-ink)

(1-b kp P) 2  : [1 n P kp]2 (J-62)

i=0 (P n +Xi) I- (-(Pn-iX (1-UP n

In order to evaluate the increase in he canceller output power due to the

"pulsed" character of the reverberation, it is necessary to know the

eigenvalues of Rxx and the projections of Rdx on the eigenvectors of Rxx"

Further, the increase in output power can be seen to depend upon P, but

this dependence is quite complex, as (J-62) shows.

J.1 Special Case - Narrowband Interference

Suppose that the interference consists of a single frequency sine wave

of frequency, wo, and that the array has the geometry of Figure A-1. Then

Rxx (PI d d+ + d* dT )  (J-63)

2

where

[I,e - jWo(t), e - jWo 2 (t) ....... e-JWo(K-1)(6t)]T (J64)
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where d d K, and for simplicity dd 0. Also

At = spacing between filter taps

and

-d -- (e 0O d + e o d*) (-5

This special case gives

x2~ = = x 0 (J-66)

P =[(d + d*), a*, a*, ... a (J67

where the aiare any set of orthionormal vectors or thogonal to d + d*.

Then

aj1 INE J'P I Cos W 0A, 1=1 (5-68)
0, otherwise

Substituting (J-68) into (J-62) gives

[I - (1-viP n) kP]2 M12 [1-II(P n+MPd] 
2 (n-mk)

Y (J-69)
(P n+MP 1  [1 -(1-vi(P n +MP d) (1-1 1P)k

J-2 1



The increase in the output power will be largest when the reverberation

first begins, n~mk, so

MP 1(1 - (1-u"P n) k-p]22
Y Cos (W A2

max P (PnMpi [10(-iP+nn2 A2(P~ ~ ~ MP [ 1p(+MP1 ) (i-jiP )

[1 (1-Ipp ) k- P 2  2

[1 (1-i4MP1)P (1Pn) k-p]o wo

J-22
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APPENDIX K - NUMERICAL EVALUATIONS OF THE LMS CANCELLER
PERFORMANCE WITH A UNIFORMLY DISTRIBUTED, SPATIALLY UNCOR-
RELATED NARROW SOURCE

Using the results of Appendix E, the canceller output spectrum for

K reference hydrophones, Ek(M), can be evaluated on the computer.

Similarly, using the results of Appendix H, the spatial response of the

optimal canceller can be determined. Evaluation of (E-20) for Ek(w) and

(H-13) for the spatial response, BW(Os), requires determination of the

DPSS, IV (k)Ik=O, 1, ... K-1 for J>.K, and the associated eigenvalues,

k (KW). The DPSS, {Vn(k)( k=O 1, ... K-1 for 0.K-l are computed

by numerically solving the eigenvalue problem

S(K, w) V k(KW) = Ak(KW) Vk(KW) (K-i)

where

S(K, ) . (sin (211W(p-9)1 (K-2)
(p-q) p=, 1, ... K-1

q=0, 1, ... K-1

The resulting Vk(KW) are given by

Vk(KW) = [V 0 (k)(KW), V I(k)(KW), V KI(k)(KW)] T

and the Xk(KW) are the desired eigenvalues. The V.(k)(KW) for J>K

can then be determined by evaluating equation (E-10),

K-1 sin (27rW(n-m)] Vm(k)(KW) = Xk(KW) V (k)(K,W) (K-4)

(n-m) -n
m=O
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In the development of the narrow source model in Appendix A, it was

assumed that P was sufficiently that

sin
(K -5)

Cos 1

where

W = sin 0 (K-6)

This restriction will be interpreted as requiring that ~ K2 radians

(approximately 11.50), mainly to assure that cos (Dce. Therefore

W < .2 d i < .2 d (K-7)

Usually in array designs,

If d/X < .5, the ambient noise components of the hydrophone outputs will

be correlated, limiting their usefulness for increasing array gain. If the

upper limit is exceeded, then the array response will include grating lobes.

These considerations suggest that the main interest will be in values of

W < .2. Certainly, given the sampling criterion, W .1. .5, developed in

Appendix F, values of W > . 5 will be of no practical interest. Several

cases with W > . 5 will be shown, however, to illustrate the importance of

the sampling criterion.
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The plots of the numerical results included here are summarized in

Table K-i. Each plot shows the canceller output spectrum, Ek (1, at a

single frequency, W, as a function of the number of reference hydrophones

used in the canceller for a particular value of W. The results are given

for a range of values of the parameter m, where the reference array is

a distance, md, from the primary hydrophone. To determine the cancella-

tion for a particular case of interest, the hydrophone spacing is computed

in wavelengths for the frequency of interest, w. Since cancellation will

improve as W decreases, the largest value of 0 (the angle to the inter-

ference, always < T/2) should be used to compute (K-6), so that the

resulting cancellation performance will be an lower bound on achievable

cancellation. The distance from the primary to the references is then

determined in units of d to provide the parameter, m.

Figures K-1 through K-5 were plotted using values of W that violate

the sampling criterion, W > 1/2, to further illustrate just how limited

cancellation is if this condition is not met. These curves clearly support

Figure F-3, which showed the irreducible canceller output spectrum, Eoo(1,w)

for the case m=1. Since it was also shown in Appendix D that

Ek(mw) > Ek(1,W),m > 1 (K-9)

it would be expected that cancellation is also severely limited for m> 1 when

W >.5.

The remaining Figures illustrate the properties of the canceller

structure derived in the preceding sections. In the presence of noise,

cancellation to the noise floor is never achieved, as predicted, and in fact
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Table K-1. Parameter Values for Numerical Results in

Figures K-1 through K-62

INR

W 40 dB 30 dB 20 dB

1.25 K-1 - -

1.0 K-2 - -

.75 K-3 - -

.6 K-4 - -

.5 K-5 - -

.4 - K-6 K-7 K-8

.3 - K-9 K-10 K-11

.2 - K-12 K-13 K-14

. 1 - K-15 K-16 K-17

.08 - K-18 K-19 K-20

.06 - K-21 K-22 K-23

.04 - K-24 K-25 K-26

.02 - K-27 K-28 K-29

.01 - K-30 K-31 K-32

.008 - K-33 K-34 K-35

.006 - K-36 K-37 K-38

.004 - K-39 K-40 K-41

.002 - K-42 K-43 K-4A

.001 - K-45 K-46 K-47

.0008 - K-48 K-49 K-50

.0006 - K-51 K-52 K-53

.0004 - K-54 K-55 K-56

.0002 - K-57 K-58 K-59

.0001 - K-60 K-61 K-62
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the output spectrum can be significantly above the noise floor. Appendix D

derived the cancellation floor, E (I,), for the m=1 case with W<1/2 as

(1,,) = 212 (w)(INR) - 1  1 + -NR32W (K-10)

2 2

where 2a12 (w) is the interference power received at any of the hydro-

phones and where INR is the interference to ambient noise ratio,

INR = (K-11)

The power at the primary output without use of the canceller is 2a12 (w ) +

Cn2(2), so that the maximum achievable cancellation, Ci(s1,),

C(,W) = E(1,W) _ I INR 12W2 ) + an2( 1 + INR + (K-12)

This has been computed and shown on Figures K-6 through K-62.

Figures K-6 through K-62 clearly illustrate the diminishing returns in

cancellation performance as references are added. If the cancellation floor

is significantly below the uncancelled primary output, that is, if

E.(W)Im=1 = E'(1,w) - 2D1 2(w) + an2(W) (K-13)

then the performance improves dramatically with the first few references.

However, the figures show a well defined transition point in K beyond

which the additional interference rejection afforded by adding another
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FIGURE K-50
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FIGURE K-51
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reference is quite modest. For example, with iNR=40 dB and W=i0 - 2

(Figure K-30), the first reference gives 28 dB of rejection, the second

adds 6 dB more, but the third gives only about 2 dB additional cancella-

tion. The hardware required to incorporate each new reference into the

structure is the same, and includes the computational load of computing the

weights in an adaptive implementation. Further, in a adaptive canceller,

the adaptive loop associated with each reference adds algorithm noise to

the system. This algorithm noise can actually offset the improvement

due to cancellation improvement. The choice of the number of references

must trade off the rejection added by a reference against the additional

algorithm noise and computations.

In Appendix F, it was shown that the canceller output spectrum for K

references and m=l, that is, EK(1,w) in the noise free case (a 2 (W)=0)
K n

is asymptotic in K to

2 Da12(w) 2K+1

A(K,W) = 2W [sin Tr WI (K-14)

Figure K-63 shows EK(1,W) for various W plotted along with A(KW) for

a n2(w)=O. It can be seen that A(K,W) is virtually indistinguishable from

EK(1,w) when an ( )0 even for small K, so that

Ek(la) 1 2 2) (W) [ 2K+1 (K-15)

n
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It seems reasonable that as long as INR >>1 and the canceller output

spectrum, EK(lI, J, is well above the cancellation floor,

EK(1,- ) >> E.(I,-) (K-16)

then the ambient noise present case should behave approximately the same

as the noise free case. The asymptote, A(K,W), is plotted on Figures K-6

through K-62 to test this hypothesis. The agreement between the plots

of EK(1,l) and A(KW) is quite dependent upon the INR, with excellent

agreement at INR=40 dB, but with EK(1,-) as much as 10 dB higher than

A(K,W) when INR=20 dB. For INR=30 dB the maximum difference is

about 5 dB. Use of (K-14) in the ambient noise present case must be

tempered by knowledge of these errors in the approximation, but it

still provides a useful "rule of thumb".

It would appear from the figures that the value of K at the intersection

of the cancellation floor, (K-12), and the asymptote, (K-14) gives a good

estimate of the transition point at which rapid improvement in cancellation

with additional references is no longer possible (for a given W<1/2 and

INR) for m=l. Using (K-12) and K-14), this intersection occurs at K=K I

where

KI  1/2 [log (sin 1W)] - ' [2W log (I + I-R - log (NR)1-I , W,1/2

(K-17)
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When the interference-to-noise ratio is high, INR ->1, then (K-17) reduces

approximately to

K- 1/2 [log (sin TrW)] -1 [(2W-1) log (-N-)]-1, W<1/2 (K-18)

Since the selected number of references must be an integer, and taking

into account that the intersection given by (K-18) is slightly lower than

the transition point in the figures, let

K 0 = K II (K-19)

where IXI is the smallest integer greater than or equal to x. Choosing

the number of references, K, equal to K 0 for m=l does not mean that fur-

ther cancellation is not possible, but that further cancellation is small relative

to the increase in computations and algorithm noise. As an example, in Fig-

ure K-18 with INR=40 dB and W = .08, (K-19) gives K0 =3 and K=3 produces

27 dB of cancellation. Use of five additional references (K=8) provides

only 2.5 dB more rejection of the interference, which would probably not

justify the additional computational cost or make up for additional algorithm

noise of using five more references.

The number, K,, provides insight as to how the number of references

required in a given situation changes with W and with INR. From (K-18)

it can be seen that K I is linear in 10 log (INR), which is the interference-

to-noise ratio in dB. The slope of K I with respect to 10 log (INR) is

d K 1 2W-i

d(10 log (INR)) = 20 log(sin rW) (K-20)
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so that approximately (2W-1)/(20 log(sin -W) references are required per

dB of INR. Figure K-64 shows K, plotted as a function of 10 log (INR)

for various W. The dependence on the interference-to-noise ratio is quite

weak when W_. 01, that is, when the interferences are very narrow.

The dependence of K I or W is more complicated as shown in Figure

K-65, which shows K, plotted as a function of W for INR=20, 30, and 40 dB.

For small W (say, W<10- 2) the dependence of KI on W is very weak,

regardless of INR. As W increases above 10- 2, the value of KI begins

to increase rapidly with W, going asymptotically to infinity at W=1/2.

Recalling from Section 3.3.1.1 that no cancellation is possible when

W=1/2, it would be expected that KI C at this point.

Now, suppose the criterion K=K 0 is used to select the number of

references used in a given situation. Figures K-66 shows that the can-

cellation achieved is within several dB of the cancellation floor, (K-12) for

this choice of K. In fact, it can be seen that the value of EKO(1,W) is

very nearby log (INR) dB above the floor, so that

1€i2( (IR-'9 -lINR 2W

E 0(1,) z (INR)"1 E.(1,w) = 202 (w)(NR) [1 + (K-21)
K 2 2 2

provided that (INR) E(1,w) _< 2aO1 2(w) + a n2(w). This condition just

assures that the approximation is not used when it would produce an

apparent increase in the interference power relative to the uncancelled

primary output. If INR >>1 and W<1, as it will be in all cases of interest,

(K-21) can be approximated as

EK 0(1,w) = 20a12 (w) (INR)2W -.9 (2W) 2W
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For 0<W < 1, (2W)- 2W is within about 1.6 dB of unity, so

E K0(1,W) V 2 i(w) (INR) 2W - 9  (K-22)

The cancellation achieved is then approximately

EK0 (1,9)
K0 (INR) 2W+.I

2 K 0 2 2(W) 1 + INR (INR) (K-23)

for INR>>I. Expressed in dB, this yields

10 log CK0 (1,w) z -. 9 [10 log (INR)] + 2W [10 log INR] (K-24)

The interference rejection in dB varies approximately linearly with both

the interference to noise ratio in dB and the parameter W. This result is
- 4 2 4

valid over the range 10 <W<.45 and 10 <INR<10

Further inspection of Figures K-6 to K-62 shows that for any given

values of W and INR, the curves of EK(m,,w) have roughly the same shape

as that of EK (1, w), and, in particular, have approximately the same

transition point in K. This suggessts that K0 may be a suitable guide for

the selection of the number of references, K, even when m>l. It can be

seen from the figures that for m>>l, EK(m,w) continues to fall off some-

what faster than EK(1,w) for K>K o . For example, in Figure K-31, with

W = .01 and INR = 103, K0 = 2 which yields 10 log C 2 (1,") = -25.5 dB.

Six additional references give 10 log C 8 (1,w)=-27.5 dB of cancellation, so

the choice of K=K0 seems justified. However, for m=5, K=K 0 =2 gives

10 log C 2 (5,w)=16 dB of cancellation, while K=3 yields 19 dB and K=5,
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22 dB of cancellation. Of course, there will always be some ambiguity as

to how much more rejection must be provided by a new reference to justify

its use. Certainly, in any given design situation K0 can be used as a

design guide, with final choices made by consulting the curves in

Figures K-6 through K-62.
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Block No. 20

ambient noise floor using a small number of references. To achieve this
cancellation, the extent of the source must be taken into account in the
design of the canceller. Curves are given for the suppression achieved
as a function of reverberation and canceller parameters and guidelines for
the selection of canceller design parameters presented.
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